全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Nanomaterials  2013 

Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing

DOI: 10.3390/nano3030498

Keywords: polyaniline, nanowire, conducting polymer, chemiresistive

Full-Text   Cite this paper   Add to My Lib

Abstract:

One dimensional polyaniline nanowire is an electrically conducting polymer that can be used as an active layer for sensors whose conductivity change can be used to detect chemical or biological species. In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed. A comprehensive literature survey on chemiresistive/conductometric sensors based on polyaniline nanowires is presented and recent developments in polyaniline nanowire-based sensors are summarized. Finally, the current limitations and the future prospect of polyaniline nanowires are discussed.

References

[1]  Patolsky, F.; Zheng, G.; Lieber, C.M. Nanowire-based biosensors. Anal. Chem. 2006, 78, 4260–4269, doi:10.1021/ac069419j.
[2]  Bangar, M.A.; Shirale, D.J.; Purohit, H.J.; Chen, W.; Myung, N.V.; Mulchandani, A. Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal. Chem. 2009, 81, 2168–2175.
[3]  Virji, S.; Huang, J.; Kaner, R.B.; Weiller, B.H. Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Lett. 2004, 4, 491–496, doi:10.1021/nl035122e.
[4]  Zhang, D.; Wang, Y. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng. B 2006, 134, 9–19, doi:10.1016/j.mseb.2006.07.037.
[5]  Mulchandani, A.; Myung, N.V. Conducting polymer nanowires-based label-free biosensors. Curr. Opin. Biotechnol. 2011, 22, 502–508, doi:10.1016/j.copbio.2011.05.508.
[6]  Ramgir, N.S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722, doi:10.1002/smll.201000972.
[7]  Matlock-Colangelo, L.; Baeumner, A.J. Recent progress in the design of nanofiber-based biosensing devices. Lab. Chip 2012, 12, 2612–2620, doi:10.1039/c2lc21240d.
[8]  Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58, doi:10.1038/354056a0.
[9]  Wang, J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17, 7–14, doi:10.1002/elan.200403113.
[10]  Jacobs, C.B.; Peairs, M.J.; Venton, B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127, doi:10.1016/j.aca.2010.01.009.
[11]  Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292, doi:10.1126/science.1062711.
[12]  Patolsky, F.; Lieber, C.M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28, doi:10.1016/S1369-7021(05)00791-1.
[13]  Yogeswaran, U.; Chen, S.-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313, doi:10.3390/s8010290.
[14]  Sunkara, M.K.; Sharma, S.; Miranda, R.; Lian, G.; Dickey, E.C. Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method. Appl. Phys. Lett. 2001, 79, 1546–1548, doi:10.1063/1.1401089.
[15]  Virji, S.; Kaner, R.B.; Weiller, B.H. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. J. Phys. Chem. B 2006, 110, 22266–22270, doi:10.1021/jp063166g.
[16]  Wang, J.; Bunimovich, Y.L.; Sui, G.; Savvas, S.; Wang, J.; Guo, Y.; Heath, J.R.; Tseng, H.-R. Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. Chem. Commun. 2006, 29, 3075–3077.
[17]  Wang, J.; Chan, S.; Carlson, R.R.; Luo, Y.; Ge, G.; Ries, R.S.; Heath, J.R.; Tseng, H.-R. Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett. 2004, 4, 1693–1697, doi:10.1021/nl049114p.
[18]  Kuhn, P.; Puigmartí-Luis, J.; Imaz, I.; Maspoch, D.; Dittrich, P.S. Controlling the length and location of in situ formed nanowires by means of microfluidic tools. Lab Chip 2011, 11, 753–757, doi:10.1039/c0lc00270d.
[19]  Hou, S.; Wang, S.; Yu, Z.T.F.; Zhu, N.Q.M.; Liu, K.; Sun, J.; Lin, W.-Y.; Shen, C.K.-F.; Fang, X.; Tseng, H.-R. A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers. Angew. Chem. 2008, 120, 1088–1091, doi:10.1002/ange.200704264.
[20]  Puigmartí-Luis, J.; Schaffhauser, D.; Burg, B.R.; Dittrich, P.S. A microfluidic approach for the formation of conductive nanowires and hollow hybrid structures. Adv. Mater. 2010, 22, 2255–2259, doi:10.1002/adma.200903428.
[21]  Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 1977, 578–580.
[22]  Macdiarmid, A.G.; Chiang, J.C.; Richter, A.F.; Epstein, A.J. Polyaniline: A new concept in conducting polymers. Synth. Met. 1987, 18, 285–290, doi:10.1016/0379-6779(87)90893-9.
[23]  Sergeyeva, T.A.; Lavrik, N.V.; Piletsky, S.A.; Rachkov, A.E.; El’skaya, A.V. Polyaniline label-based conductometric sensor for IgG detection. Sens. Actuators B 1996, 34, 283–288.
[24]  Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359.
[25]  Dhand, C.; Das, M.; Datta, M.; Malhotra, B.D. Recent advances in polyaniline based biosensors. Biosens. Bioelectron. 2011, 26, 2811–2821, doi:10.1016/j.bios.2010.10.017.
[26]  Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26, doi:10.1016/j.aca.2008.02.068.
[27]  Reddinger, J.; Reynolds, J. Molecular Engineering of π-Conjugated Polymers. In Advances in Polymer Science; Springer: Berlin, Heidelberg, Germany, 1999; Volume 145, pp. 57–122.
[28]  MacDiarmid, A.G.; Epstein, A.J. Polyanilines: A novel class of conducting polymers. Faraday Discuss. Chem. Soc. 1989, 88, 317–332, doi:10.1039/dc9898800317.
[29]  Syed, A.A.; Dinesan, M.K. Review: Polyaniline—A novel polymeric material. Talanta 1991, 38, 815–837, doi:10.1016/0039-9140(91)80261-W.
[30]  Geniès, E.M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Polyaniline: A historical survey. Synth. Met. 1990, 36, 139–182, doi:10.1016/0379-6779(90)90050-U.
[31]  Huang, W.-S.; Humphrey, B.D.; MacDiarmid, A.G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 1 1986, 82, 2385–2400, doi:10.1039/f19868202385.
[32]  Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810, doi:10.1016/j.progpolymsci.2009.04.003.
[33]  Stejskal, J.; Sapurina, I.; Trchová, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420–1481.
[34]  Tran, H.D.; Wang, Y.; D’Arcy, J.M.; Kaner, R.B. Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano 2008, 2, 1841–1848, doi:10.1021/nn800272z.
[35]  Gupta, V.; Miura, N. Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochem. Commun. 2005, 7, 995–999.
[36]  Macdiarmid, A.G.; Mu, S.-L.; Somasiri, N.L.D.; Wu, W. Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes. Mol. Cryst. Liq. Cryst. 1985, 121, 187–190, doi:10.1080/00268948508074859.
[37]  Gupta, V.; Miura, N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Mater. Lett. 2006, 60, 1466–1469, doi:10.1016/j.matlet.2005.11.047.
[38]  Zhiani, M.; Gharibi, H.; Kakaei, K. Performing of novel nanostructure MEA based on polyaniline modified anode in direct methanol fuel cell. J. Power Sources 2012, 210, 42–46, doi:10.1016/j.jpowsour.2012.02.081.
[39]  Kelly, F.M.; Meunier, L.; Cochrane, C.; Koncar, V. Polyaniline: Application as solid state electrochromic in a flexible textile display. Displays 2013, 34, 1–7, doi:10.1016/j.displa.2012.10.001.
[40]  Anderson, M.R.; Mattes, B.R.; Reiss, H.; Kaner, R.B. Conjugated polymer films for gas separations. Science 1991, 252, 1412–1415.
[41]  Chang, C.-H.; Huang, T.-C.; Peng, C.-W.; Yeh, T.-C.; Lu, H.-I.; Hung, W.-I.; Weng, C.-J.; Yang, T.-I.; Yeh, J.-M. Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 2012, 50, 5044–5051, doi:10.1016/j.carbon.2012.06.043.
[42]  Focke, W.W.; Wnek, G.E.; Wei, Y. Influence of oxidation state, pH, and counterion on the conductivity of polyaniline. J. Phys. Chem. 1987, 91, 5813–5818, doi:10.1021/j100306a059.
[43]  Zhang, X.; Goux, W.J.; Manohar, S.K. Synthesis of polyaniline nanofibers by “nanofiber seeding”. J. Am. Chem. Soc. 2004, 126, 4502–4503, doi:10.1021/ja031867a.
[44]  Stafstr?m, S.; Brédas, J.L.; Epstein, A.J.; Woo, H.S.; Tanner, D.B.; Huang, W.S.; MacDiarmid, A.G. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies. Phys. Rev. Lett. 1987, 59, 1464–1467.
[45]  Heeger, A.J. Semiconducting and metallic polymers: The fourth generation of polymeric materials. J. Phys. Chem. B 2001, 105, 8475–8491, doi:10.1021/jp011611w.
[46]  Ray, A.; Richter, A.F.; MacDiarmid, A.G.; Epstein, A.J. Polyaniline: Protonation/deprotonation of amine and imine sites. Synth. Met. 1989, 29, 151–156.
[47]  Nechtschein, M.; Genoud, F.; Menardo, C.; Mizoguchi, K.; Travers, J.P.; Villeret, B. On the nature of the conducting state of polyaniline. Synth. Met. 1989, 29, 211–218.
[48]  McManus, P.M.; Cushman, R.J.; Yang, S.C. Influence of oxidation and protonation on the electrical conductivity of polyaniline. J. Phys. Chem. 1987, 91, 744–747, doi:10.1021/j100287a050.
[49]  Genies, E.M.; Tsintavis, C. Redox mechanism and electrochemical behaviour or polyaniline deposits. J. Electroanal. Chem. Interfacial Electrochem. 1985, 195, 109–128.
[50]  Geniès, E.M.; Lapkowski, M.; Penneau, J.F. Cyclic voltammetry of polyaniline: Interpretation of the middle peak. J. Electroanal. Chem. Interfacial Electrochem. 1988, 249, 97–107, doi:10.1016/0022-0728(88)80351-6.
[51]  Nunziante, P.; Pistoia, G. Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique. Electrochim. Acta 1989, 34, 223–228, doi:10.1016/0013-4686(89)87089-6.
[52]  MacDiarmid, A.G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590, doi:10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2.
[53]  Focke, W.W.; Wnek, G.E. Conduction mechanisms in polyaniline (emeraldine salt). J. Electroanal. Chem. Interfacial Electrochem. 1988, 256, 343–352, doi:10.1016/0022-0728(88)87008-6.
[54]  Saheb, A.H.; Seo, S.S. UV-vis and Raman spectral analysis of polyaniline/gold thin films as a function of applied potential. Anal. Lett. 2011, 44, 1206–1216, doi:10.1080/00032719.2010.511741.
[55]  Kobayashi, T.; Yoneyama, H.; Tamura, H. Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 281–291.
[56]  Li, Q.; Cruz, L.; Phillips, P. Granular-rod model for electronic conduction in polyaniline. Phys. Rev. B 1993, 47, 1840–1845, doi:10.1103/PhysRevB.47.1840.
[57]  Li, W.; Wan, M. Porous polyaniline films with high conductivity. Synth. Met. 1998, 92, 121–126, doi:10.1016/S0379-6779(98)80101-X.
[58]  Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, UK, 2012.
[59]  Joo, J.; Long, S.M.; Pouget, J.P.; Oh, E.J.; MacDiarmid, A.G.; Epstein, A.J. Charge transport of the mesoscopic metallic state in partially crystalline polyanilines. Phys. Rev. B 1998, 57, 9567–9580, doi:10.1103/PhysRevB.57.9567.
[60]  Ghosh, M.; Barman, A.; De, S.K.; Chatterjee, S. Crossover from Mott to Efros-Shklovskii variable-range-hopping conductivity in conducting polyaniline. Synth. Met. 1998, 97, 23–29, doi:10.1016/S0379-6779(98)00105-2.
[61]  Sheng, P.; Abeles, B.; Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 1973, 31, 44–47, doi:10.1103/PhysRevLett.31.44.
[62]  Lin, Y.-F.; Chen, C.-H.; Xie, W.-J.; Yang, S.-H.; Hsu, C.-S.; Lin, M.-T.; Jian, W.-B. Nano approach investigation of the conduction mechanism in polyaniline nanofibers. ACS Nano 2011, 5, 1541–1548, doi:10.1021/nn103525b.
[63]  Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A.T.; Pinto, N.J.; MacDiarmid, A.G. Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm. Appl. Phys. Lett. 2003, 83, 3800–3802.
[64]  Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K.J.; Samuelson, L. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc. 1999, 121, 71–78.
[65]  Ma, Y.; Zhang, J.; Zhang, G.; He, H. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2004, 126, 7097–7101.
[66]  Trchová, M.; ?eděnková, I.; Konyushenko, E.N.; Stejskal, J.; Holler, P.; ?iri?-Marjanovi?, G. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B 2006, 110, 9461–9468.
[67]  Zhang, L.; Zujovic, Z.D.; Peng, H.; Bowmaker, G.A.; Kilmartin, P.A.; Travas-Sejdic, J. Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules 2008, 41, 8877–8884, doi:10.1021/ma801728j.
[68]  Chiou, N.-R.; Epstein, A.J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 2005, 17, 1679–1683, doi:10.1002/adma.200401000.
[69]  Wei, Y.; Tang, X.; Sun, Y.; Focke, W.W. A study of the mechanism of aniline polymerization. J. Polym. Sci. Part Polym. Chem. 1989, 27, 2385–2396.
[70]  Yang, H.; Bard, A.J. The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J. Electroanal. Chem. 1992, 339, 423–449, doi:10.1016/0022-0728(92)80466-H.
[71]  Li, D.; Huang, J.; Kaner, R.B. Polyaniline nanofibers: A unique polymer nanostructure for versatile applications. Acc. Chem. Res. 2009, 42, 135–145, doi:10.1021/ar800080n.
[72]  Huang, J.; Kaner, R.B. Nanofiber formation in the chemical polymerization of aniline: A mechanistic study. Angew. Chem. 2004, 116, 5941–5945, doi:10.1002/ange.200460616.
[73]  Dias, H.V.R.; Wang, X.; Rajapakse, R.M.G.; Elsenbaumer, R.L. A mild, copper catalyzed route to conducting polyaniline. Chem. Commun. 2006, 976–978.
[74]  Huang, J.; Kaner, R.B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855, doi:10.1021/ja0371754.
[75]  Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline nanofibers: Facile synthesis and chemical sensors. J. Am. Chem. Soc. 2003, 125, 314–315, doi:10.1021/ja028371y.
[76]  Qiang, J.; Yu, Z.; Wu, H.; Yun, D. Polyaniline nanofibers synthesized by rapid mixing polymerization. Synth. Met. 2008, 158, 544–547, doi:10.1016/j.synthmet.2008.03.023.
[77]  Martin, C.R. Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 1995, 28, 61–68, doi:10.1021/ar00050a002.
[78]  Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966.
[79]  Li, G.; Zhang, C.; Li, Y.; Peng, H.; Chen, K. Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibers. Polymer 2010, 51, 1934–1939, doi:10.1016/j.polymer.2010.03.004.
[80]  Kitani, A.; Kaya, M.; Yano, J.; Yoshikawa, K.; Sasaki, K. “Polyaniline”: Formation reaction and structure. Synth. Met. 1987, 18, 341–346, doi:10.1016/0379-6779(87)90902-7.
[81]  Liang, L.; Liu, J.; Windisch, C.F., Jr.; Exarhos, G.J.; Lin, Y. Direct assembly of large arrays of oriented conducting polymer nanowires. Angew. Chem. Int. Ed. 2002, 41, 3665–3668, doi:10.1002/1521-3773(20021004)41:19<3665::AID-ANIE3665>3.0.CO;2-B.
[82]  Choi, S.-J.; Park, S.-M. Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates. Adv. Mater. 2000, 12, 1547–1549, doi:10.1002/1521-4095(200010)12:20<1547::AID-ADMA1547>3.0.CO;2-1.
[83]  Stilwell, D.E.; Park, S.-M. Electrochemistry of conductive polymers IV electrochemical studies on polyaniline degradation—Product identification and coulometric studies. J. Electrochem. Soc. 1988, 135, 2497–2502, doi:10.1149/1.2095365.
[84]  Huang, L.; Wang, Z.; Wang, H.; Cheng, X.; Mitra, A.; Yan, Y. Polyaniline nanowires by electropolymerization from liquid crystalline phases. J. Mater. Chem. 2002, 12, 388–391, doi:10.1039/b107499g.
[85]  Mu, S.; Yang, Y. Spectral characteristics of polyaniline nanostructures synthesized by using cyclic voltammetry at different scan rates. J. Phys. Chem. B 2008, 112, 11558–11563, doi:10.1021/jp8051517.
[86]  Diaz, A.F.; Logan, J.A. Electroactive polyaniline films. J. Electroanal. Chem. Interfacial Electrochem. 1980, 111, 111–114, doi:10.1016/S0022-0728(80)80081-7.
[87]  Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253.
[88]  Reneker, D.H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223, doi:10.1088/0957-4484/7/3/009.
[89]  Van Dyke, L.S.; Martin, C.R. Electrochemical investigations of electronically conductive polymers. 4. Controlling the supermolecular structure allows charge transport rates to be enhanced. Langmuir 1990, 6, 1118–1123.
[90]  Martin, C.R. Membrane-based synthesis of nanomaterials. Chem. Mater. 1996, 8, 1739–1746, doi:10.1021/cm960166s.
[91]  Parthasarathy, R.V.; Martin, C.R. Template-synthesized polyaniline microtubules. Chem. Mater. 1994, 6, 1627–1632, doi:10.1021/cm00046a011.
[92]  Jackowska, K.; Bieguński, A.; Tagowska, M. Hard template synthesis of conducting polymers: A route to achieve nanostructures. J. Solid State Electrochem. 2008, 12, 437–443, doi:10.1007/s10008-007-0453-7.
[93]  Xiao, Y.; Kharitonov, A.B.; Patolsky, F.; Weizmann, Y.; Willner, I. Electrocatalytic intercalator-induced winding of double-stranded DNA with polyaniline. Chem. Commun. 2003, 2003, 1540–1541.
[94]  Fan, Y.; Chen, X.; Trigg, A.D.; Tung, C.; Kong, J.; Gao, Z. Detection of microRNAs using target-guided formation of conducting polymer nanowires in nanogaps. J. Am. Chem. Soc. 2007, 129, 5437–5443, doi:10.1021/ja067477g.
[95]  Liu, W.; Anagnostopoulos, A.; Bruno, F.F.; Senecal, K.; Kumar, J.; Tripathy, S.; Samuelson, L. Biologically derived water soluble conducting polyaniline. Synth. Met. 1999, 101, 738–741, doi:10.1016/S0379-6779(98)00208-2.
[96]  Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, BME-17, 70–71, doi:10.1109/TBME.1970.4502688.
[97]  Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B 2003, 88, 1–20, doi:10.1016/S0925-4005(02)00301-5.
[98]  Bergveld, P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 1972, BME-19, 342–351, doi:10.1109/TBME.1972.324137.
[99]  Liu, H.; Kameoka, J.; Czaplewski, D.A.; Craighead, H.G. Polymeric nanowire chemical sensor. Nano Lett. 2004, 4, 671–675, doi:10.1021/nl049826f.
[100]  Liu, C.; Noda, Z.; Sasaki, K.; Hayashi, K. Development of a polyaniline nanofiber-based carbon monoxide sensor for hydrogen fuel cell application. Int. J. Hydrog. Energy 2012, 37, 13529–13535, doi:10.1016/j.ijhydene.2012.06.096.
[101]  Liu, C.; Hayashi, K.; Toko, K. Au nanoparticles decorated polyaniline nanofiber sensor for detecting volatile sulfur compounds in expired breath. Sens. Actuators B 2012, 161, 504–509, doi:10.1016/j.snb.2011.10.068.
[102]  Zeng, F.-W.; Liu, X.-X.; Diamond, D.; Lau, K.T. Humidity sensors based on polyaniline nanofibres. Sens. Actuators B 2010, 143, 530–534, doi:10.1016/j.snb.2009.09.050.
[103]  Lin, Q.; Li, Y.; Yang, M. Polyaniline nanofiber humidity sensor prepared by electrospinning. Sens. Actuators B 2012, 161, 967–972, doi:10.1016/j.snb.2011.11.074.
[104]  Lim, J.-H.; Phiboolsirichit, N.; Mubeen, S.; Deshusses, M.A.; Mulchandani, A.; Myung, N.V. Electrical and gas sensing properties of polyaniline functionalized single-walled carbon nanotubes. Nanotechnology 2010, 21, 075502:1–075502:7.
[105]  Al-Mashat, L.; Shin, K.; Kalantar-zadeh, K.; Plessis, J.D.; Han, S.H.; Kojima, R.W.; Kaner, R.B.; Li, D.; Gou, X.; Ippolito, S.J.; et al. Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 2010, 114, 16168–16173, doi:10.1021/jp103134u.
[106]  Shirsat, M.D.; Bangar, M.A.; Deshusses, M.A.; Myung, N.V.; Mulchandani, A. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl. Phys. Lett. 2009, 94, 083502:1–083502:3.
[107]  Sadek, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 2006, 17, 4488–4492, doi:10.1088/0957-4484/17/17/034.
[108]  Sadek, A.Z.; Baker, C.O.; Powell, D.A.; Wlodarski, W.; Kaner, R.B.; Kalantar-zadeh, K. Polyaniline nanofiber based surface acoustic wave gas sensors-effect of nanofiber diameter on H2 response. IEEE Sens. J. 2007, 7, 213–218, doi:10.1109/JSEN.2006.883769.
[109]  Arsat, R.; Yu, X.F.; Li, Y.X.; Wlodarski, W.; Kalantar-zadeh, K. Hydrogen gas sensor based on highly ordered polyaniline nanofibers. Sens. Actuators B 2009, 137, 529–532, doi:10.1016/j.snb.2009.01.028.
[110]  Wang, H.; Yang, P.-H.; Cai, H.-H.; Cai, J. Constructions of polyaniline nanofiber-based electrochemical sensor for specific detection of nitrite and sensitive monitoring of ascorbic acid scavenging nitrite. Synth. Met. 2012, 162, 326–331, doi:10.1016/j.synthmet.2011.12.013.
[111]  Xian, Y.; Hu, Y.; Liu, F.; Xian, Y.; Wang, H.; Jin, L. Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite. Biosens. Bioelectron. 2006, 21, 1996–2000, doi:10.1016/j.bios.2005.09.014.
[112]  Pal, S.; Alocilja, E.C.; Downes, F.P. Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens. Bioelectron. 2007, 22, 2329–2336, doi:10.1016/j.bios.2007.01.013.
[113]  Li, G.; Martinez, C.; Janata, J.; Smith, J.A.; Josowicz, M.; Semancik, S. Effect of morphology on the response of polyaniline-based conductometric gas sensors: Nanofibers vs. thin films. Electrochem. Solid-State Lett. 2004, 7, H44–H47, doi:10.1149/1.1795053.
[114]  Nicolas-Debarnot, D.; Poncin-Epaillard, F. Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 2003, 475, 1–15, doi:10.1016/S0003-2670(02)01229-1.
[115]  Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Nanostructured polyaniline sensors. Chem. Eur. J. 2004, 10, 1314–1319, doi:10.1002/chem.200305211.
[116]  Sadek, A.Z.; Wlodarski, W.; Kalantar-Zadeh, K.; Baker, C.; Kaner, R.B. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sens. Actuators A 2007, 139, 53–57, doi:10.1016/j.sna.2006.11.033.
[117]  Liao, Y.; Zhang, C.; Zhang, Y.; Strong, V.; Tang, J.; Li, X.-G.; Kalantar-zadeh, K.; Hoek, E.M.V.; Wang, K.L.; Kaner, R.B. Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors. Nano Lett. 2011, 11, 954–959, doi:10.1021/nl103322b.
[118]  Liao, Y.; Zhang, C.; Wang, X.; Li, X.-G.; Ippolito, S.J.; Kalantar-zadeh, K.; Kaner, R.B. Carrier mobility of single-walled carbon nanotube-reinforced polyaniline nanofibers. J. Phys. Chem. C 2011, 115, 16187–16192.
[119]  Kaner, R.B. Gas, liquid and enantiomeric separations using polyaniline. Synth. Met. 2001, 125, 65–71, doi:10.1016/S0379-6779(01)00512-4.
[120]  Liao, Y.; Yu, D.-G.; Wang, X.; Chain, W.; Li, X.-G.; Hoek, E.M.V.; Kaner, R.B. Carbon nanotube-templated polyaniline nanofibers: Synthesis, flash welding and ultrafiltration membranes. Nanoscale 2013, 5, 3856–3862, doi:10.1039/c3nr00441d.
[121]  Guillen, G.R.; Farrell, T.P.; Kaner, R.B.; Hoek, E.M.V. Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline–polysulfone ultrafiltration membranes. J. Mater. Chem. 2010, 20, 4621–4628, doi:10.1039/b925269j.
[122]  Blinova, N.V.; Svec, F. Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. J. Membr. Sci. 2012, 423–424, 514–521, doi:10.1016/j.memsci.2012.09.003.
[123]  Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45, doi:10.1111/j.1749-6632.1962.tb13623.x.
[124]  Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825, doi:10.1021/cr068123a.
[125]  Bartlett, P.N.; Astier, Y. Microelectrochemical enzyme transistors. Chem. Commun. 2000, 2000, 105–112, doi:10.1039/a902905b.
[126]  White, H.S.; Kittlesen, G.P.; Wrighton, M.S. Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor. J. Am. Chem. Soc. 1984, 106, 5375–5377, doi:10.1021/ja00330a070.
[127]  Ofer, D.; Crooks, R.M.; Wrighton, M.S. Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: Finite windows of high conductivity. J. Am. Chem. Soc. 1990, 112, 7869–7879, doi:10.1021/ja00178a004.
[128]  Bartlett, P.N.; Birkin, P.R. A microelectrochemical enzyme transistor responsive to glucose. Anal. Chem. 1994, 66, 1552–1559, doi:10.1021/ac00081a031.
[129]  Bartlett, P.N.; Birkin, P.R.; Wang, J.H.; Palmisano, F.; De Benedetto, G. An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal. Chem. 1998, 70, 3685–3694, doi:10.1021/ac971088a.
[130]  Battaglini, F.; Bartlett, P.N.; Wang, J.H. Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose. Anal. Chem. 2000, 72, 502–509, doi:10.1021/ac990321x.
[131]  Forzani, E.S.; Zhang, H.; Nagahara, L.A.; Amlani, I.; Tsui, R.; Tao, N. A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 2004, 4, 1785–1788, doi:10.1021/nl049080l.
[132]  Yuk, J.S.; Jin, J.-H.; Alocilja, E.C.; Rose, J.B. Performance enhancement of polyaniline-based polymeric wire biosensor. Biosens. Bioelectron. 2009, 24, 1348–1352, doi:10.1016/j.bios.2008.07.079.
[133]  Muhammad-Tahir, Z.; Alocilja, E.C. A conductometric biosensor for biosecurity. Biosens. Bioelectron. 2003, 18, 813–819, doi:10.1016/S0956-5663(03)00020-4.
[134]  Tahir, Z.M.; Alocilja, E.C.; Grooms, D.L. Polyaniline synthesis and its biosensor application. Biosens. Bioelectron. 2005, 20, 1690–1695, doi:10.1016/j.bios.2004.08.008.
[135]  Forzani, E.S.; Li, X.; Tao, N. Hybrid amperometric and conductometric chemical sensor based on conducting polymer nanojunctions. Anal. Chem. 2007, 79, 5217–5224, doi:10.1021/ac0703202.
[136]  Gao, Z.Q.; Rafea, S.; Lim, L.H. Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline. Adv. Mater. 2007, 19, 602–606, doi:10.1002/adma.200601090.
[137]  Chang, H.; Yuan, Y.; Shi, N.; Guan, Y. Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal. Chem. 2007, 79, 5111–5115, doi:10.1021/ac070639m.
[138]  Castillo-Ortega, M.M.; Rodriguez, D.E.; Encinas, J.C.; Plascencia, M.; Méndez-Velarde, F.A.; Olayo, R. Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites. Sens. Actuators B 2002, 85, 19–25, doi:10.1016/S0925-4005(02)00045-X.
[139]  Sangodkar, H.; Sukeerthi, S.; Srinivasa, R.S.; Lal, R.; Contractor, A.Q. A biosensor array based on polyaniline. Anal. Chem. 1996, 68, 779–783, doi:10.1021/ac950655w.
[140]  Muhammad-Tahir, Z.; Alocilja, E.C. Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sens. J. 2003, 3, 345–351, doi:10.1109/JSEN.2003.815782.
[141]  Raffa, D.; Leung, K.T.; Battaglini, F. A microelectrochemical enzyme transistor based on an n-alkylated poly(aniline) and its application to determine hydrogen peroxide at neutral pH. Anal. Chem. 2003, 75, 4983–4987.
[142]  Yue, J.; Epstein, A.J. Synthesis of self-doped conducting polyaniline. J. Am. Chem. Soc. 1990, 112, 2800–2801, doi:10.1021/ja00163a051.
[143]  Yue, J.; Epstein, A.J.; Macdiarmid, A.G. Sulfonic acid ring-substituted polyaniline, a self-doped conducting polymer. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1990, 189, 255–261, doi:10.1080/00268949008037237.
[144]  Ghenaatian, H.R.; Mousavi, M.F.; Kazemi, S.H.; Shamsipur, M. Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth. Met. 2009, 159, 1717–1722, doi:10.1016/j.synthmet.2009.05.014.
[145]  Thiemann, C.; Brett, C.M. Electropolymerisation and properties of conducting polymers derived from aminobenzenesulphonic acids and from mixtures with aniline. Synth. Met. 2001, 125, 445–451, doi:10.1016/S0379-6779(01)00502-1.
[146]  Kamaraj, K.; Karpakam, V.; Sathiyanarayanan, S.; Venkatachari, G. Electrosysnthesis of poly(aniline-co-m-amino benzoic acid) for corrosion protection of steel. Mater. Chem. Phys. 2010, 122, 123–128, doi:10.1016/j.matchemphys.2010.02.061.
[147]  Lukachova, L.V.; Shkerin, E.A.; Puganova, E.A.; Karyakina, E.E.; Kiseleva, S.G.; Orlov, A.V.; Karpacheva, G.P.; Karyakin, A.A. Electroactivity of chemically synthesized polyaniline in neutral and alkaline aqueous solutions: Role of self-doping and external doping. J. Electroanal. Chem. 2003, 544, 59–63, doi:10.1016/S0022-0728(03)00065-2.
[148]  Zhang, L.; Dong, S. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J. Electroanal. Chem. 2004, 568, 189–194, doi:10.1016/j.jelechem.2004.01.022.
[149]  Lee, K.-H.; Park, B.J.; Song, D.H.; Chin, I.-J.; Choi, H.J. The role of acidic m-cresol in polyaniline doped by camphorsulfonic acid. Polymer 2009, 50, 4372–4377, doi:10.1016/j.polymer.2009.07.009.
[150]  Del Castillo-Castro, T.; Castillo-Ortega, M.M.; Villarreal, I.; Brown, F.; Grijalva, H.; Pérez-Tello, M.; Nu?o-Donlucas, S.M.; Puig, J.E. Synthesis and characterization of composites of DBSA-doped polyaniline and polystyrene-based ionomers. Compos. Part Appl. Sci. Manuf. 2007, 38, 639–645, doi:10.1016/j.compositesa.2006.02.001.
[151]  Haberko, J.; Bernasik, A.; ?u?ny, W.; Hasik, M.; Raczkowska, J.; Rysz, J.; Budkowski, A. Humidity and wetting effects in spin-cast blends of insulating polymers and conducting polyaniline doped with DBSA. J. Appl. Polym. Sci. 2012, 127, 2354–2361.
[152]  Lyutov, V.V.; Ivanov, S.D.; Mirsky, V.M.; Tsakova, V.T. Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): Electrochemical behaviour and conductive properties in neutral solutions. Chem. Pap. 2013, 67, 1002–1011, doi:10.2478/s11696-013-0341-9.
[153]  Tarver, J.; Yoo, J.E.; Dennes, T.J.; Schwartz, J.; Loo, Y.-L. Polymer acid doped polyaniline is electrochemically stable beyond pH 9. Chem. Mater. 2009, 21, 280–286, doi:10.1021/cm802314h.
[154]  Bayer, C.L.; Konuk, A.A.; Peppas, N.A. Development of a protein sensing device utilizing interactions between polyaniline and a polymer acid dopant. Biomed. Microdevices 2010, 12, 435–442, doi:10.1007/s10544-010-9400-y.
[155]  Raitman, O.A.; Katz, E.; Bückmann, A.F.; Willner, I. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J. Am. Chem. Soc. 2002, 124, 6487–6496, doi:10.1021/ja012680r.
[156]  Tang, Y.; Pan, K.; Wang, X.; Liu, C.; Luo, S. Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Microchim. Acta 2010, 168, 231–237, doi:10.1007/s00604-009-0286-4.
[157]  Bonastre, A.M.; Sosna, M.; Bartlett, P.N. An analysis of the kinetics of oxidation of ascorbate at poly(aniline)-poly(styrene sulfonate) modified microelectrodes. Phys. Chem. Chem. Phys. 2011, 13, 5365–5372, doi:10.1039/c0cp02327b.
[158]  Bartlett, P.N.; Wang, J.H. Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)-poly(styrenesulfonate) composite films. J. Chem. Soc. Faraday Trans. 1996, 92, 4137–4143, doi:10.1039/ft9969204137.
[159]  ?apkowski, M.; Vieil, E. Control of polyaniline electroactivity by ion size exclusion. Synth. Met. 2000, 109, 199–201, doi:10.1016/S0379-6779(99)00237-4.
[160]  Lee, S.-Y.; Choi, G.-R.; Lim, H.; Lee, K.-M.; Lee, S.-K. Electronic transport characteristics of electrolyte-gated conducting polyaniline nanowire field-effect transistors. Appl. Phys. Lett. 2009, 95, 013113:1–013113:3.
[161]  Lee, S.-Y.; Lee, S.-K.; Lim, H.; Choi, G.-R. Irreversible degradation behaviors of an electrolyte-gated polyaniline (PANI) nanowire field-effect transistor. J. Korean Phys. Soc. 2010, 57, 1416–1420, doi:10.3938/jkps.57.1416.
[162]  He, H.; Zhu, J.; Tao, N.J.; Nagahara, L.A.; Amlani, I.; Tsui, R. A conducting polymer nanojunction switch. J. Am. Chem. Soc. 2001, 123, 7730–7731.
[163]  Song, E.; Choi, J.-W. An On-chip Chemiresistive Polyaniline Nanowire-based pH Sensor with Self-calibration Capability. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 4018–4021.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133