Common dispersion methods such as ultrasonic sonication, planetary centrifugal mixing and magnetic dispersion have been used extensively to achieve moderate exfoliation of nanoparticles in polymer matrix. In this study, the effect of adding three roll milling to these three dispersion methods for nanoclay dispersion into epoxy matrix was investigated. A combination of each of these mixing methods with three roll milling showed varying results relative to the unmodified polymer laminate. A significant exfoliation of the nanoparticles in the polymer structure was obtained by dispersing the nanoclay combining three roll milling to magnetic and planetary centrifugal mixing methods. This exfoliation promoted a stronger interfacial bond between the matrix and the fiber, which increased the final properties of the E-glass/epoxy nanocomposite. However, a combination of ultrasound sonication and three roll milling on the other hand, resulted in poor clay exfoliation; the sonication process degraded the polymer network, which adversely affected the nanocomposite final properties relative to the unmodified E-glass/epoxy polymer.
References
[1]
Jo, B.; Park, S.; Kim, D. Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Constr. Build. Mater. 2008, 22, 14–20, doi:10.1016/j.conbuildmat.2007.02.009.
[2]
Zainuddina, S.; Hosura, M.V.; Zhou, Y.; Narteh, A.T.; Kumar, A.; Jeelani, S. Experimental and numerical investigations on flexural and thermal properties of nanoclay-epoxy nanocomposites. Mater. Sci. Eng. A 2010, 527, 7920–7926, doi:10.1016/j.msea.2010.08.078.
[3]
Peng-Cheng, M.; Siddiqui, A.N.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites. Compos. A 2010, 41, 1345–1367, doi:10.1016/j.compositesa.2010.07.003.
[4]
Mirzadeh, A.; Lafleur, P.G.; Kamal, M.R.; Dubois, C. The effects of nanoclay dispersion levels and processing parameters on the dynamic vulcanization of TPV nanocomposites based on PP/EPDM prepared by reactive extrusion. Polym. Eng. Sci. 2012, 52, 1099–1110, doi:10.1002/pen.22178.
Bandyopadhyay, J.; Suprakas, S.R. The quantitative analysis of nano-clay dispersion in polymer nanocompositesby small angle X-ray scattering combined with electron microscopy. Polymer 2010, 51, 1437–1449, doi:10.1016/j.polymer.2010.01.029.
[7]
Manitiu, M.; Horsch, S.; Gulari, E.; Kannan, M.R. Role of polymer-clay interactions and nano-clay dispersion on the viscoelasticresponse of supercritical CO2 dispersed polyvinylmethylether (PVME)-clay nanocomposites. Polymer 2009, 50, 3786–3796, doi:10.1016/j.polymer.2009.05.036.
[8]
Crosby, J.A.; Lee, J.Y. Polymer nanocomposites: The “nano” effect on mechanical properties. Polym. Rev. 2007, 47, 217–229, doi:10.1080/15583720701271278.
[9]
Tsai, J.L.; Huang, J.C. Strain rate effect on mechanical behaviors of nylon 6–clay nanocomposites. Compos. Mater. 2006, 40, 925–938, doi:10.1177/0021998305056382.
[10]
Yasmin, A.; Abot, J.L.; Daniel, I.M. Processing of clay/epoxy nanocomposites by shear mixing. Scr. Mater. 2003, 49, 81–86, doi:10.1016/S1359-6462(03)00173-8.
Ngo, T.D.; Ton-That, M.T.; Hoa, S.V.; Cole, K.C. Effect of temperature, duration and speed of pre-mixing on the dispersion of clay/epoxy nanocomposites. Compos. Sci. Technol. 2009, 69, 1831–1840, doi:10.1016/j.compscitech.2009.03.024.
[13]
Dean, K.; Krstina, J.; Tian, W.; Varley, J.R. Effect of ultrasonic dispersion methods on thermal and mechanical properties of organoclay epoxy nanocomposites. Macromol. Mater. Eng. 2007, 292, 415–427, doi:10.1002/mame.200600435.
[14]
Lee, E.C.; Mielewski, D.F.; Baird, R.J. Exfoliation and dispersion enhancement in polypropylene nanocomposites by in-situ melt phase ultrasonication. Polym. Eng. Sci. 2004, 44, 1773–1782, doi:10.1002/pen.20179.
[15]
Bensadoun, F.; Kchit, N.; Billotte, C.; Trochu, F.; Ruiz, E. A comparative study of dispersion techniques for nanocomposite made with nanoclay and an unsaturated polyester resin. J. Nanomater. 2011, 10, 7:1–7:12.
Lam, C.K.; Lau, K.T.; Cheung, H.Y.; Ling, H.Y. Effect of ultrasound sonication in nanoclay clustersof nanoclay/epoxy composites. Mater. Lett. 2005, 59, 1369–1372, doi:10.1016/j.matlet.2004.12.048.
[18]
Bilotti, E.; Fischer, H.R.; Peijs, T. Polymer nanocomposites based on needle-like sepiolite clays: Effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties. Appl. Polym. Sci. 2008, 107, 1116–1123, doi:10.1002/app.25395.
[19]
Aktas, L.; Altan, C.M. Characterization of nanocomposite laminates fabricated from aqueous dispersion of nanoclay. Polym. Compos. 2010, 31, 620–629.
[20]
Albdiry, M.T.; Yousif, B.F.; Ku, H.; Lau, K.T. A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composite. J. Compos. Mater. 2012, 47, 1093–1115, doi:10.1177/0021998312445592.
[21]
Butzix, P.; Dsouza, N.N.; Golden, D.T.; Garreti, D. Epoxy and montmorillonite nanocomposite: Effect of composition on reaction kinetics. Polym. Eng. Sci. 2001, 41, 1794–1802, doi:10.1002/pen.10876.
[22]
Zainuddin, S.; Hosur, M.V.; Zhou, Y.; Kumar, A.; Jeelani, S. Durability study of neat/nanophased GFRP composites subjected to different environmental conditioning. Mater. Sci. Eng. A 2010, 527, 3091–3099, doi:10.1016/j.msea.2010.02.022.
[23]
Kord, B.; Hosseini, M.S. Effect of nanoclay dispersion on physical and mechanical properties of wood flour polypropylene/glass fiber hybrid composite. Bioresources 2011, 6, 1741–1751.