The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF 4:Yb 3+30%/Tm 3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF 4:Yb 3+30%/Tm 3+0.5%)/NaYbF 4/NaYF 4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF 4:Yb 3+30%/Tm 3+0.5%)/NaYF 4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb 3+/Tm 3+-codoped NaYF 4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.
References
[1]
Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174, doi:10.1021/cr020357g.
[2]
Wang, F.; Liu, X.G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989, doi:10.1039/b809132n.
[3]
Naccache, R.; Rodríguez, E.M.; Bogdan, N.; Sanz-Rodríguez, F.; Cruz, M.C.I.; Fuente, J.; Vetrone, F.; Jaue, D.; Solé, J.G.; Capobianco, J.A. High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanoparticles. Cancers 2012, 4, 1067–1105, doi:10.3390/cancers4041067.
[4]
Chen, G.; Yang, C.; Prasad, P.N. Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency upconversion and downconversion in lanthanide-doped nanoparticles. Acc. Chem. Res. 2013, 46, 1474–1486, doi:10.1021/ar300270y.
[5]
Chen, G.; Seo, J.W.; Yang, C.; Prasad, P.N. Nanochemistry and nanomaterials for photovoltaics. Chem. Soc. Rev. 2013, 42, 8304–8338, doi:10.1039/c3cs60054h.
Boyer, J.C.; Cuccia, L.A.; Capobianco, J.A. Syntheis of colloidal upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852.
[8]
Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T. A four-color colloidal multiplexing nanoparticle system. ACS Nano 2008, 2, 120–124, doi:10.1021/nn7002458.
[9]
Wang, F.; Liu, X.G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanocrystals. J. Am. Chem. Soc. 2008, 130, 5642–5643, doi:10.1021/ja800868a.
Chen, G.; Liu, H.; Liang, H.; Somesfalean, G.; Zhang, Z. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C 2008, 112, 12030–12036, doi:10.1021/jp804064g.
[14]
Chen, G.; Liu, H.; Liang, H.; Somesfalean, G.; Zhang, Z. Enhanced multiphoton ultraviolet and blue upconversion emission in Y2O3:Er3+ nanocrystals by codoping with Li+ ions. Solid State Commun. 2008, 148, 96–100, doi:10.1016/j.ssc.2008.08.001.
[15]
Schietinger, S.; Aichele, T.; Wang, H.; Nann, T.; Benson, O. Plasmon-enhanced upconversion in Single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 2010, 10, 134–138, doi:10.1021/nl903046r.
[16]
Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C.G.; Capobianco, J.A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924–2929, doi:10.1002/adfm.200900234.
[17]
Yang, D.; Li, C.; Li, G.; Shang, M.; Kang, X.; Lin, J. Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. J. Mater. Chem. 2011, 21, 5923–5927, doi:10.1039/c0jm04179c.
[18]
Wu, F.; Liu, X.; Kong, X.; Zhang, Y.; Tu, L.; Liu, K.; Song, S.; Zhang, H. The real role of active-shell in enhancing the luminescence of lanthanides doped nanomaterials. Appl. Phys. Lett. 2013, 102, 243104:1–243104:4.
Chen, G.; Shen, J.; Ohulchanskyy, T.Y.; Patel, N.J.; Kuikov, A.; Li, Z.; Song, J.; Pandey, R.K.; ?gren, H.; Prasad, P.N. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012, 6, 8280–8287, doi:10.1021/nn302972r.
[21]
Shen, J.; Chen, G.; Ohulchanskyy, T.Y.; Kesseli, S.J.; Buchholz, S.; Li, Z.; ?gren, H.; Prasad, P.N.; Han, G. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4:Yb,Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. Small 2013, 9, 3213–3217.
[22]
Chen, X.; Zhao, Z.; Jiang, M.; Que, D.; Shi, S.; Zheng, N. Preparation and photodynamic therapy application of NaYF4:Yb,Tm-NaYF4:Yb,Er multifunctional upconverting nanoparticles. New J. Chem. 2013, 37, 1782–1788, doi:10.1039/c3nj00065f.
[23]
Yi, G.S.; Chow, G.M. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341–343, doi:10.1021/cm062447y.
[24]
Wang, G.; Qin, W.; Wang, L.; Wei, G.; Zhu, P.; Kim, R. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals. Opt. Express 2008, 16, 11907–11914, doi:10.1364/OE.16.011907.
[25]
Chen, G.; Ohulchanskyy, T.Y.; Law, W.C.; ?gren, H.; Prasad, P.N. Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 2011, 3, 2003–2008.
[26]
Wang, F.; Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. 2010, 49, 7456–7460, doi:10.1002/anie.201003959.
[27]
Zhang, F.; Che, R.; Li, X.; Yao, C.; Yang, J.; Shen, D.; Hu, P.; Li, W.; Zhao, D. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: Shell thickness dependence in upconverting optical properties. Nano Lett. 2012, 12, 2852–2858, doi:10.1021/nl300421n.