全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Plants  2013 

Decrease in Available Soil Water Storage Capacity Reduces Vitality of Young Understorey European Beeches (Fagus sylvatica L.)—A Case Study from the Black Forest, Germany

DOI: 10.3390/plants2040676

Keywords: water stress, available soil water storage capacity, crown dieback, above ground biomass, tree survivability, semi-natural forest, summer drought of 2003, basal area increment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Growth and survival of young European beech ( Fagus sylvatica L.) is largely dependent on water availability. We quantified the influence of water stress (measured as Available Soil Water Storage Capacity or ASWSC) on vitality of young beech plants at a dry site. The study site was located in a semi-natural sessile oak ( Quercus petraea (Mattuschka) Liebl.) stand adjacent to beech stands on a rocky gneiss outcrop in southwestern Germany. Plant vitality was measured as crown dieback and estimated by the percentage of dead above ground biomass. The magnitude of crown dieback was recorded in different vertical parts of the crown. Biomass was calculated from the harvested plants following allometric regression equations specifically developed for our study site. Stem discs from harvested plants were used for growth analysis. We found that soil depth up to bedrock and skeleton content significantly influenced ASWSC at the study site. A significant negative correlation between ASWSC and crown dieback was found. Highest rates of crown dieback were noticed in the middle and lower crown. The threshold of crown dieback as a function of drought stress for young beech plants was calculated for the first time in this study. This threshold of crown dieback was found to be 40% of above ground biomass. Beyond 40% crown dieback, plants eventually experienced complete mortality. In addition, we found that the extremely dry year of 2003 significantly hampered growth (basal area increment) of plants in dry plots (ASWSC < 61 mm) in the study area. Recovery in the plants’ radial growth after that drought year was significantly higher in less dry plots (ASWSC > 61 mm) than in dry plots. We concluded that a decrease in ASWSC impeded the vitality of young beech causing partial up to complete crown dieback in the study site.

References

[1]  IPCC. Climate Change 2007: The Physical Science Basis; Intergovernmental Panel on Climate Change: New York, NY, USA, 2007; p. 996.
[2]  Mayer, H.; Holst, T.; Brugger, U.; Kirchassner, A. Trends of the forest significant climate variables air temperature and precipitation in south-west Germany from 1950 to 2000. Allgemeine Forst- und Jagd-Zeitung 2005, 176, 45–56.
[3]  Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogee, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533, doi:10.1038/nature03972.
[4]  Anderegg, W.R.L.; Berry, J.A.; Field, C.B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 2012, 17, 693–700, doi:10.1016/j.tplants.2012.09.006.
[5]  Kohler, M.; Kockemann, B.; Peichl, M.; Schmitt, J.; Reif, A. Impacts of the drought 2003 on the crown condition of suppressed and intermediate beech trees (Fagus sylvatica L.) at the ecotone between beech and downy oak forest in the nature reserve Innerberg, Sudbaden. Allgemeine Forst- und Jagd-Zeitung 2006, 177, 86–90.
[6]  Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684, doi:10.1016/j.foreco.2009.09.001.
[7]  Brodribb, T.J.; Bowman, D.; Nichols, S.; Delzon, S.; Burlett, R. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytol. 2010, 188, 533–542, doi:10.1111/j.1469-8137.2010.03393.x.
[8]  Coll, L.; Balandier, P.; Picon-Cochard, C.; Prevosto, B.; Curt, T. Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions. Ann. For. Sci. 2003, 60, 593–600, doi:10.1051/forest:2003051.
[9]  Lebourgeois, F.; Breda, N.; Ulrich, E.; Granier, A. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees Struct. Funct. 2005, 19, 385–401, doi:10.1007/s00468-004-0397-9.
[10]  Robson, T.M.; Rodriguez-Calcerrada, J.; Sanchez-Gomez, D.; Aranda, I. Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps. Tree Physiol. 2009, 29, 249–259.
[11]  Van Hees, A.F.M. Growth and morphology of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought. Ann. Sci. For. 1997, 54, 9–18, doi:10.1051/forest:19970102.
[12]  Jump, A.S.; Hunt, J.M.; Penuelas, J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Chang. Biol. 2006, 12, 2163–2174, doi:10.1111/j.1365-2486.2006.01250.x.
[13]  Gartner, S.; Reif, A.; Xystrakis, F.; Sayer, U.; Bendagha, N.; Matzarakis, A. The drought tolerance limit of Fagus sylvatica forest on limestone in southwestern Germany. J. Veg. Sci. 2008, 19, 757–768.
[14]  Topoliantz, S.; Ponge, J.F. Influence of site conditions on the survival of Fagus sylvatica seedlings in an old-growth beech forest. J. Veg. Sci. 2000, 11, 369–374, doi:10.2307/3236629.
[15]  Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur. J. For. Res. 2005, 124, 319–333, doi:10.1007/s10342-005-0085-3.
[16]  Seletkovic, I.; Potocic, N.; Ugarkovic, D.; Jazbec, A.; Pernar, R.; Seletkovic, A.; Benko, M. Climate and relief properties influence crown condition of common beech (Fagus sylvatica L.) on the Medvednica massif. Period. Biol. 2009, 111, 435–441.
[17]  Czajkowski, T.; Kuhling, M.; Bolte, A. Impact of the 2003 summer drought on growth of beech sapling natural regeneration (Fagus sylvatica L.) in north-eastern Central Europe. Allgemeine Forst- und Jagd-Zeitung 2005, 176, 133–143.
[18]  Rood, S.B.; Patino, S.; Coombs, K.; Tyree, M.T. Branch sacrifice: Cavitation-associated drought adaptation of riparian cottonwoods. TreesStruct. Funct. 2000, 14, 248–257, doi:10.1007/s004680050010.
[19]  Anderegg, W.R.L.; Anderegg, L.D.L. Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Tree Physiol. 2013, 33, 252–260, doi:10.1093/treephys/tpt016.
[20]  Puettmann, K.; Coates, K.D.; Messier, C. A Critique of Silviculture: Managing for Complexity; Island Press: Washington, DC, USA, 2009; p. 189.
[21]  Pedersen, B.S. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 1998, 79, 79–93, doi:10.1890/0012-9658(1998)079[0079:TROSIT]2.0.CO;2.
[22]  Bolte, A.; Czajkowski, T.; Kompa, T. The north-eastern distribution range of European beech—A review. Forestry 2007, 80, 413–429, doi:10.1093/forestry/cpm028.
[23]  Ellenberg, H. Vegetation Ecology of Central Europe; Cambridge University Press: Cambridge, UK, 1988.
[24]  Larcher, W. Plant Ecophysiology; Ulmer Verlag: Stuttgart, Germany, 2001.
[25]  Manion, P.D. Tree Disease Concepts; Prentice Hall: Englewood Cliffs, NJ, USA, 1981.
[26]  Cochard, H.; Lemoine, D.; Dreyer, E. The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L. Plant Cell Environ. 1999, 22, 101–108, doi:10.1046/j.1365-3040.1999.00367.x.
[27]  Breda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644, doi:10.1051/forest:2006042.
[28]  Rust, S.; Roloff, A. Acclimation of crown structure to drought in Quercus robur L.—intra- and inter-annual variation of abscission and traits of shed twigs. Basic Appl. Ecol. 2004, 5, 283–291.
[29]  Schulze, E.-D.; Beck, E.; Muller-Hohenstein, K. Plant Ecology; Springer: Berlin/Heidelberg, Germany, 2005; p. 702.
[30]  Evenari, M.; Shanan, L.; Tadmor, N. The Negev: The Challenge of a Desert; Harvard University Press: Cambridge, MA, USA, 1982; p. 437.
[31]  Rust, S.; Roloff, A. Reduced photosynthesis in old oak (Quercus robur): The impact of crown and hydraulic architecture. Tree Physiol. 2002, 22, 597–601, doi:10.1093/treephys/22.8.597.
[32]  Eckstein, D.; Richter, K.; Aniol, R.W.; Quiehl, F. Dendroclimatological investigations of the beech decline in the southwestern part of the Vogelsberg (Hesse, West-Germany). Forstwissenschaftliches Centralblatt 1984, 103, 274–290, doi:10.1007/BF02744238.
[33]  Leuschner, C.; Backes, K.; Hertel, D.; Schipka, F.; Schmitt, U.; Terborg, O.; Runge, M. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For. Ecol. Manag. 2001, 149, 33–46, doi:10.1016/S0378-1127(00)00543-0.
[34]  Brubaker, L.B. Responses of tree populations to climatic-change. Vegetatio 1986, 67, 119–130, doi:10.1007/BF00037362.
[35]  Von Lüpke, B. Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. For. Ecol. Manag. 1998, 106, 19–26, doi:10.1016/S0378-1127(97)00235-1.
[36]  Chakraborty, T. Effect of Soil Drought on Vitality and Growth on Juvenile and Understorey Beech (Fagus sylvatica L.) Trees: Case Study from a Rocky Gneiss Outcrop near Freiburg, Black Forest, Germany. Master Thesis; Albert-Ludwigs-University of Freiburg: Freiburg, Germany, 2010. Available online: http://www.freidok.uni-freiburg.de/volltexte/8066/ (accessed on 17 October 2013).
[37]  FVA. Aufnahmeanweisung und Verfahrensbeschreibung permanente Betriebsinventur pBle + pBlf. (Guidebook for Doing Forest Inventory, in German); Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg: Freiburg, Germany, 2004.
[38]  Hodgson, J.M. Soil Survey Field Handbook; Soil Survey of England and Wales, Rothamsted Experimental Station: Harpenden, UK, 1974; Volume 5.
[39]  Munsell, A.H. Munsell Soil Color Charts, Revised ed. ed.; MacBeth Divisionof Kollmorgen Instruments Corp: New Windsor, NY, USA, 1994.
[40]  Sayer, U. Die ?kologie der Flaumeiche (Quercus pubescens Willd.) und ihrer Hybriden auf Kalkstandorten an ihrer n?rdlichen Arealgrenze (Untersuchungen zu Boden, Klima und Vegetation); Cramer: Stuttgart, Germany, 2000; Volume 340, p. 198.
[41]  Samaras, D. The Vegetation of Greek Fir (Abies cephalonica Loudon) Forests on the Oxia—North Vardousia Mountain System, Central Greece, in Relation to Drought. Ph.D. Thesis; Albert Ludwigs University of Freiburg: Freiburg, Germany, 2012. Available online: http://www.freidok.uni-freiburg.de/volltexte/8642/ (accessed on 17 October 2013).
[42]  FAO. Guidelines for Soil Description; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006.
[43]  Arbeitskreis Standortskartierung. Forstliche Standortsaufnahme, 6th ed. ed.; IHW-Verlag und Verlagsbuchhandlung: Munich, Germany, 2003.
[44]  AG Boden. Bodenkundliche Kartieranleitung: Arbeitsgruppe Boden, 4th ed. ed.; Schweizerbart Verlag: Stuttgart, Germany, 1994.
[45]  Schack-Kirchner, H. Ein Fuzzy-Schlüssel für die Textursch?tzung mit der Fingerprobe; Fakult?t der Albert-Ludwigs-Universit?t und Forstliche Versuchs- und Forschungsanstalt, Freiburger Forstliche Forschung, Baden-Württemberg: Freiburg, Germany, 2001.
[46]  Schlichting, E.; Blume, H.-P.; Stahr, K. Bodenkundliches Praktikum. Eine Einführung in pedologisches Arbeiten für ?kologen, insbesondere Land- und Forstwirte und für Geowissenschaftler, 2nd ed. ed.; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1995.
[47]  Zianis, D.; Muukkonen, P.; Makipaa, R.; Mencuccini, M. Biomass and stem volume equations for tree species in Europe. Silva Fenn. Monogr. 2005, 4, 5–63.
[48]  WinDENDRO: Tree Ring, Stem, Wood Density Analysis and Measurement; Regent Inc.: Quebec City, QC, Canada, 2009.
[49]  Leblanc, D.C. Relationships between breast-height and whole-stem growth indexes for red spruce on Whiteface Mountain, New-York. Can. J. For. Res. 1990, 20, 1399–1407, doi:10.1139/x90-185.
[50]  Rebetez, M.; Mayer, H.; Dupont, O.; Schindler, D.; Gartner, K.; Kropp, J.P.; Menzel, A. Heat and drought 2003 in Europe: A climate synthesis. Ann. For. Sci. 2006, 63, 569–577, doi:10.1051/forest:2006043.
[51]  IBM Corporation. IBM SPSS Advanced Statistics 20; IBM Corporation: New York, USA, 2011.
[52]  Rich, P.M.; Breshears, D.D.; White, A.B. Phenology of mixed woody-herbaceous ecosystems following extreme events: Net and differential responses. Ecology 2008, 89, 342–352, doi:10.1890/06-2137.1.
[53]  Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151.
[54]  Suarez, M.L.; Ghermandi, L.; Kitzberger, T. Factors predisposing episodic drought-induced tree mortality in Nothofagus—Site, climatic sensitivity and growth trends. J. Ecol. 2004, 92, 954–966, doi:10.1111/j.1365-2745.2004.00941.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133