全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2014 

Modification of a Phenolic Resin with Epoxy- and Methacrylate-Functionalized Silica Sols to Improve the Ablation Resistance of Their Glass Fiber-Reinforced Composites

DOI: 10.3390/polym6010105

Keywords: ablation, glass fiber-reinforced composite, phenolic resin (PR), silica sol, silsesquioxanes, MPMS, GPMS, TEOS, DGEBA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Functionalized silica sols were obtained by the hydrolytic condensation of (γ-methacryloxypropyl)trimethoxysilane (MPMS), (γ-glycidyloxypropyl)trimethoxysilane (GPMS) and tetraethoxysilane (TEOS). Three different sols were obtained: MPS (derived from MPMS and TEOS), GPS-MPS (derived from GPMS, MPMS and TEOS), and GPSD (derived from GPMS, TEOS and diglycidyl ether of bisphenol A, DGEBA). These silica sols were mixed with a phenolic resin (PR). Ethylenediamine was used as a hardener for epoxy-functionalized sols and benzoyl peroxide was used as an initiator of the free-radical polymerization of methacrylate-functionalized silica sols. Glass fiber-reinforced composites were obtained from the neat PR and MPS-PR, GPS-MPS-PR and GPSD-PR. The resulting composites were evaluated as ablation resistant materials in an acetylene-oxygen flame. A large increase in the ablation resistance was observed when the PR was modified by the functionalized silica sols. The ablation resistance of the composites decreased as follows: GPSD-PR > MPS-PR > GPS-MPS-PR > PR.

References

[1]  Rosensweig, R.E.; Beecher, N. Theory for the ablation of fiberglass-reinforced phenolic resin. AIAA J. 1963, 1, 1802–1809, doi:10.2514/3.1928.
[2]  Geier, M. Space refractory materials. Metaux Corros. Idustrie 1969, 523, 92–128.
[3]  Koo, J.H.; Stretz, H.; Weispfenning, J.T.; Luo, Z.; Wootan, W. Nanocomposite Rocket Ablative Materials: Processing, Microstructure and Performance. In Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA, USA, 19–22 April 2004.
[4]  Koo, J.H.; Pilato, L.A.; Wissler, G.E. Polymer nanostructured materials for propulsion systems. J. Spacecr. Rockets 2007, 44, 1250–1262, doi:10.2514/1.26295.
[5]  Li, W.; Liu, F.; Wei, L.; Zhao, T. Synthesis, morphology and properties of polydimethylsiloxane-modified allylated novolac/4,4′-bismaleimidodiphenylmethane. Eur. Polym. J. 2006, 42, 580–592, doi:10.1016/j.eurpolymj.2005.08.015.
[6]  Hung, A.Y.C.; Wang, F.Y.; Yeh, S.R.; Chen, W.J.M.; Ma, C.C. Carbon/carbon composites derived from poly(ethylene oxide)-modified novolac-type phenolic resin: Microstructure, physical and morphological properties. J. Appl. Polym. Sci. 2002, 84, 1609–1619, doi:10.1002/app.10407.
[7]  Gloria, A.; Ronca, D.; Russo, T.; D’Amora, U.; Chierchia, M.; de Santis, R.; Nicolais, L.; Ambrosio, L. Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications. J. Appl. Biomater. Biomech. 2011, 9, 151–163.
[8]  Winya, N.; Boonpan, A.; Prapunkarn, K. Study of factors affecting the ablation rate of phenolic resin/fiber glass. Int. J. Chem. Eng. Appl. 2013, 4, 234–237.
[9]  Qiu, J.; Cao, X.; Tian, C.; Zhang, J. Ablation performance of a novel super-hybrid composite. J. Mater. Sci. Technol. 2005, 21, 269–273, doi:10.1179/174328405X20969.
[10]  Zhang, X.; Hu, L.; Sun, D. Nanoindentation and nanoscratch profiles of hybrid films based on (γ-methacrylpropyl)trimethoxysilane and tetraethoxysilane. Acta Mater. 2006, 54, 5469–5475, doi:10.1016/j.actamat.2006.06.057.
[11]  Baney, R.H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Silsesquioxanes. Chem. Rev. 1995, 95, 1409–1430, doi:10.1021/cr00037a012.
[12]  Chiang, C.L.; Ma, C.C.M.; Wu, D.L.; Kuan, H.C. Preparation, characterization, and properties of novolac-type phenolic/SiO2 hybrid organic–inorganic nanocomposite materials by sol-gel method. J. Appl. Polym. Sci. A 2003, 41, 905–913, doi:10.1002/pola.10624.
[13]  Zhang, X.; Hu, L.; Sun, D.; Zhao, W. Three-dimensional configurations of organic/inorganic hybrid nanostructureal blocks: A quantum chemical investigation for cage structure of (γ-glycidyloxy)propylsilsesquioxane. J. Mol. Struct. 2008, 872, 197–204, doi:10.1016/j.molstruc.2007.02.034.
[14]  Chen, P.; Hu, L.; Zhang, X.; Sun, D. Enhanced corrosion resistance for silsesquioxane coatings by diglycidyl ether of bisphenol A. Mater. Sci. Pol. 2007, 25, 843–849.
[15]  Wu, K.; Song, L.; Hu, Y.; Lu, H.; Kandola, B.K.; Kandare, E. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog. Org. Coat. 2009, 65, 490–497, doi:10.1016/j.porgcoat.2009.04.008.
[16]  Fasce, D.P.; Williams, R.J.J.; Erra-Balsells, R.; Ishikawa, Y.; Nonami, H. One-step synthesis of polyhedral silsesquioxanes bearing bulky substituents: UV-MALDI-TOF and ESI-TOF mass spectrometry characterization of reaction products. Macromolecules 2001, 34, 3534–3539, doi:10.1021/ma001711k.
[17]  Williams, R.J.J.; Erra-Balsells, R.; Ishikawa, Y.; Nonami, H.; Mauri, A.N.; Riccardi, C.C. UV-MALDI-TOF and ESI-TOF mass spectrometry characterization of silsesquioxanes obtained by the hydrolytic condensation of (γ-glycidoxypropyl)trimethoxysilane in an epoxidized solvent. Macromol. Chem. Phys. 2001, 202, 2425–2433, doi:10.1002/1521-3935(20010701)202:11<2425::AID-MACP2425>3.0.CO;2-M.
[18]  Eisenberg, P.; Erra-Balsells, R.; Ishikawa, Y.; Lucas, J.C.; Nonami, H.; Williams, R.J.J. Silsesquioxanes derived from the bulk polycondensation of [γ-(methacryloxy)propyl] trimethoxysilane with concentrated formic acid: Evolution of molar mass distributions and fraction of intramolecular cycles. Macromolecules 2002, 35, 1160–1174.
[19]  Liu, Y.; Wang, D.; Hu, L.; Liu, J. Study on Phenolic-Resin/Carbon-fiber Ablation Composites Modified with Polyhedral Oligomeric Silsesquioxanes. In Proceedings of the 4th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5–8 January 2009; pp. 605–608.
[20]  Pascault, J.P.; Sautereau, H.; Verdu, J.; Williams, R.J.J. Thermosetting Polymers; Marcel Dekker: New York, NY, USA, 2002; pp. 24–29.
[21]  Smith, M.E.; Ishida, H. Kinetics of the condensation reaction of epoxide with phenol: Linear chain growth versus branching. Macromolecules 1994, 27, 2701–2707, doi:10.1021/ma00088a008.
[22]  Al Dwayyan, A.S.; Khan, M.N.; Salhi, S.A. Optical characterization of chemically etched nanoporous silicon embedded in sol-gel matrix. J. Nanomater. 2012, 2012, 1–7, doi:10.1155/2012/713203.
[23]  Loy, D.A.; Baugher, B.M.; Baugher, C.R.; Schneider, D.A.; Rahimian, K. Substituent effects on the sol-gel chemistry of organotrialkoxysilanes. Chem. Mater. 2000, 12, 3624–3632, doi:10.1021/cm000451i.
[24]  Joseph, P.; Tretsiakova-Mcnally, S. Reactive modifications of some chain-and step-growth polymers with phosphorus-containing compounds: Effects on flame retardance-a review. Polym. Adv. Technol. 2011, 22, 395–406, doi:10.1002/pat.1900.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133