全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mathematical Modeling of the Expert System Predicting the Severity of Acute Pancreatitis

DOI: 10.1155/2014/532453

Full-Text   Cite this paper   Add to My Lib

Abstract:

The method of building the hyperplane which separates the convex hulls in the Euclidean space is proposed. The algorithm of prediction of the presence of severity in patients based on this method is developed and applied in practice to predict the presence of severity in patients with acute pancreatitis. 1. Introduction During the last decades, pronounced tendency to the relentless increase in morbidity in acute pancreatitis is observed. Thus, the depth of pathomorphological pancreatic parenchyma lesions can vary from the development of edematous pancreatitis up to pancreatic necrosis. However, accurate predicting of the probable nature of the lesion of the pancreas in the early stages of acute pancreatitis is one of the most difficult problems of modern pancreatology. Diagnostic and the predictive probability of existing laboratory and instrumental diagnostic markers and rating scales does not exceed 70–80% [1–3]. Such situation is a major difficulty in selecting the adequate treatment strategy in the initial stages of acute pancreatitis. Thus the search for new methods of accurate predicting of acute pancreatitis’ severity becomes an urgent problem. Development of mathematical approaches for prediction in medicine was developed by Fisher, the father of the linear discriminant analysis [4]. Currently, there are many approaches to solving this problem: cluster analysis, the construction of predictive tables, image recognition, and linear programming. Fundamentals of building the prognostic tables and Wald serial analysis are described in [5]. Cluster analysis is commonly used for solving the tasks of medical prediction. In the paper [6], the procedure of cluster analysis with a study of the indices of the daily variability of cardiac rhythm in patients with the ischemic disease of heart is examined. In [7] using national data from the Scientific Registry of Transplant Recipients authors compare transplant and wait-list hospitalization rates. They suggest two marginal methods to analyze such clustered recurrent event data; the first model postulates a common baseline event rate, while the second features cluster-specific baseline rates. Results from the proposed models to those based on a frailty model were compared with the various methods compared and contrasted. Three major considerations in designing a cluster analysis are described in [8]. The first relates to selection of the individuals. The second consideration is selection of variables for measurement and the third consideration is how many variables to choose to enter into a cluster analysis.

References

[1]  E. J. Balthazar, “Acute pancreatitis: assessment of severity with clinical and CT evaluation,” Radiology, vol. 223, no. 3, pp. 603–613, 2002.
[2]  G. Sathyanarayan, P. K. Garg, H. K. Prasad, and R. K. Tandon, “Elevated level of interleukin-6 predicts organ failure and severe disease in patients with acute pancreatitis,” Journal of Gastroenterology and Hepatology, vol. 22, no. 4, pp. 550–554, 2007.
[3]  A. K. Khanna, S. Meher, S. Prakash, et al., “Comparison of ranson, Glasgow, MOSS, SIRS, BISAP, APACHE-II, CTSI scores, IL-6, CRP, and procalcitonin in predicting severity, organ failure, pancreatic necrosis, and mortality in acute pancreatitis,” HPB Surgery, vol. 2013, Article ID 367581, 10 pages, 2013.
[4]  R. A. Fisher, Contributions To Mathematical Statistics, John Wiley & Sons, 1950.
[5]  E. V. Gubler and A. A. Genkin, Primenenie Neparametricheskih Kriteriev Statistiki v Medico-Biologicheskih Issledovanijah (Using the Nonparametric Statistic Criteria in Medical and Biological Researches), Leningrad, Russia, 1973.
[6]  A. I. Borodulin, A. V. Sviridov, and O. V. Sudakov, “Using the cluster analysis in the in the diagnostic of ischemic heart disease,” Prikladnie Informacionnie Aspekti Medicini, no. 2, pp. 28–32, 2008.
[7]  D. E. Schaubel and J. Cai, “Analysis of clustered recurrent event data with application to hospitalization rates among renal failure patients,” Biostatistics, vol. 6, no. 3, pp. 404–419, 2005.
[8]  M. Weatherall, P. Shirtcliffe, J. Travers, and R. Beasley, “Use of cluster analysis to define COPD phenotypes,” European Respiratory Journal, vol. 36, no. 3, pp. 472–474, 2010.
[9]  A. Mahr, S. Katsahian, H. Varet, et al., “Revisiting the classification of clinical phenotypes of anti-neutrophil cytoplasmic antibody-associated vasculitis: a cluster analysis,” Annals of the Rheumatic Diseases, vol. 72, no. 6, pp. 1003–1010, 2013.
[10]  O. L. Mangasarian, W. N. Street, and W. H. Wolberg, “Breast carter diagnosis and prognosis via linear programrnig,” Operation Research, vol. 43, no. 4, 1995.
[11]  A. I. Golikov, Y. G. Evtushenko, and S. Ketabchi, “On families of hyperplanes that separate polyhedra,” Computational Mathematics and Mathematical Physics, vol. 45, no. 2, pp. 238–253, 2005.
[12]  A. R. Alimov and V. Y. Protasov, “Separation of convex sets by extreme hyperplanes,” Fundamental and Applied Mathematics, vol. 17, no. 4, pp. 3–12, 2012.
[13]  I. I. Eremin, “Fejér methods for the strong separability of convex polyhedral sets,” Russian Mathematics, no. 12, pp. 33–43, 2006.
[14]  A. V. Ershova, “Algorithm of the disjoint convex polyhedral separating using Fejer mappings,” Sistemi Upravlenia I Informacionnie Tehnologii, vol. 1, no. 35, pp. 53–56, 2009.
[15]  C. B?hm and H.-P. Kriegel, “Determining the convex hull in large multidimensional databases,” in Data Warehousing and Knowledge Discovery, vol. 2114 of Lecture Notes in Computer Science, pp. 294–306, Springer, 2001.
[16]  G. Fung, R. Rosales, and B. Krishnapuram, “Learning rankings via convex hull separation,” in Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS '05), pp. 395–402, December 2005.
[17]  A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Courier Dover, 1999.
[18]  D. G. Altman, Practical Statistics for Medical Research, Chapman & Hall/CRC, London, UK, 1991.
[19]  S. A. Abramov, Lectures at Algorithmic Complexity, MTSNMO, Moscow, Russia, 2009.
[20]  F. Preparata and M. Shamos, Computational Geometry—An Introduction, Springer, 1985.
[21]  P. A. Banks and M. L. Freeman, “Practice guidelines in acute pancreatitis,” The American Journal of Gastroenterology, vol. 101, no. 10, pp. 2379–2400, 2006.
[22]  E. L. Bradley III and C. F. Frey, “A clinically based classification system for acute pancreatitis: summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992,” Archives of Surgery, vol. 128, no. 5, pp. 586–590, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133