全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Behaviors of Crystallization for Osmotic Pressure under Microwave Irradiation

DOI: 10.4236/jcpt.2015.51002, PP. 9-14

Keywords: Microwave, In-Situ Observation, Osmotic Pressure

Full-Text   Cite this paper   Add to My Lib

Abstract:

We studied chemical garden in order to investigate precipitation behavior for osmotic pressure under microwave irradiation. The salt concentration and microwave irradiation power were varied. Microwave irradiation induced release of osmotic pressure and change of precipitation pattern because polar molecules vibrate and rotate in an electromagnetic field. For example, the width of precipitation increased and the number of rapture of the membrane decreased due to the release of osmotic pressure by the irradiation. Accordingly, microwave irradiation accelerated the diffusion of ionic molecules through the membrane.

References

[1]  Cartwright, J.H.E., García-Ruiz, J.M., Novella, M.L. and Otálora, F. (2002) Formation of Chemical Gardens. Journal of Colloid and Interface Science, 256, 351-359.
http://dx.doi.org/10.1006/jcis.2002.8620
[2]  Pratama, F.S., Robinson, H.F. and Pagano, J.J. (2011) Spatially Resolved Analysis of Calcium-Silica Tubes in Reverse Chemical Gardens. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 127-133.
http://dx.doi.org/10.1016/j.colsurfa.2011.08.041
[3]  Bormashenko, E., Bormashenko, Y., Stanevsky, O. and Pogreb, R. (2006) Evolution of Chemical Gardens in Aqueous Solutions of Polymers. Chemical Physics Letters, 417, 341-344.
http://dx.doi.org/10.1016/j.cplett.2005.10.049
[4]  Barge, L.M., Doloboff, I.J., White, L.M., Stucky, G.D., Russell, M.J. and Kanik, I. (2011) Characterization of Iron-Phosphate-Silicate Chemical Garden Structures. Langmuir, 28, 3714-3721.
http://dx.doi.org/10.1021/la203727g
[5]  Aaskuma, Y., Murakami, Y. and Konishi, M. (2014) Anti-Solvent Effect of Crystallization by Feeding Ethanol under Microwave Radiation. Crystal Research and Technology, 49, 129-134.
http://dx.doi.org/10.1002/crat.201300327
[6]  Asakuma, Y. and Miura, M. (2014) Effect of Microwave Radiation on Diffusion Behavior of Anti-Solvent during Crystallization. Journal of Crystal Growth, 402, 32-36.
ttp://dx.doi.org/10.1016/j.jcrysgro.2014.04.031
[7]  Parmar, H., Kanazawa, Y., Asada, M., Asakuma, Y., Phan, C., Pareek, V. and Evans, G. (2014) Influence of Microwave on Water Surface Tension. Langmuir, 30, 9875-9879.
http://dx.doi.org/10.1021/la5019218
[8]  Nakai, Y., Tsujita, Y. and Yoshimizu, H. (2002) Control of Gas Permeability for Cellulose Acetate Membrane by Microwave Irradiation. Desalination, 145, 375-377.
http://dx.doi.org/10.1016/S0011-9164(02)00439-3
[9]  Nakai, Y., Yoshimizu, H. and Tsujita, Y. (2005) Enhanced Gas Permeability of Cellulose Acetate Membranes under Microwave Irradiation. Journal of Membrane Science, 256, 72-77.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133