全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PeerJ  2015 

Effect of 2H and 18O water isotopes in kinesin-1 gliding assay

DOI: 10.7717/peerj.284

Keywords: Kinesin-1,Microtubules,Heavy-water,Gliding motility assay

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show for the first time the effects of heavy-hydrogen water (2H2O) and heavy-oxygen water (H218O) on the gliding speed of microtubules on kinesin-1 coated surfaces. Increased fractions of isotopic waters used in the motility solution decreased the gliding speed of microtubules by a maximum of 21% for heavy-hydrogen and 5% for heavy-oxygen water. We also show that gliding microtubule speed returns to its original speed after being treated with heavy-hydrogen water. We discuss possible interpretations of these results and the importance for future studies of water effects on kinesin and microtubules. We also discuss the implication for using heavy waters in biomolecular devices incorporating molecular motors.

References

[1]  Asbury CL, Fehr AN, Block SM. 2003. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302:2130-2134
[2]  Bachand GD, Rivera SB, Boal AK, Gaudioso J, Liu J, Bunker BC. 2004. Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins. Nano Letters 4:817-821
[3]  Benner SA. 1989. Enzyme kinetics and molecular evolution. Chemical Reviews 89:789-806
[4]  Berliner E, Young EC, Anderson K, Mahtani HK, Gelles J. 1995. Failure of a single-headed kinesin to track parallel to microtubule protofilaments. Nature 373:718-721
[5]  Blacklow SC, Raines RT, Lim WA, Zamore PD, Knowles JR. 1988. Triosephosphate isomerase catalysis is diffusion controlled. Biochemistry 27:1158-1165
[6]  Bhm KJ, Stracke R, Baum M, Zieren M, Unger E. 2000. Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity. FEBS Letters 466:59-62
[7]  Bhm KJ, Stracke R, Unger E. 2000. Speeding up kinesin-driven microtubule gliding in vitro by variation of cofactor composition and physicochemical parameters. Cell Biology International 24:335-341
[8]  Bhm KJ, Stracke R, Vater W, Unger E. 2004. Inhibition of Kinesin-driven microtubule motility by polyhydroxy compounds. In: Hein H-J, Bischoff G, eds. Micro- and nanostructures of biological systems. Aachen: Shaker Verlag GmbH, Germany. 153-165 Available at http://lccn.loc.gov/2007440241
[9]  Castro JS, Deymier PA, Trzaskowski B, Bucay J. 2010. Heterogeneous and homogeneous nucleation of Taxol crystals in aqueous solutions and gels: effect of tubulin proteins. Colloids and Surfaces B: Biointerfaces 76:199-206
[10]  Castro JS, Trzaskowski B, Deymier PA, Bucay J, Adamowicz L, Hoying JB. 2009. Binding affinity of fluorochromes and fluorescent proteins to Taxol crystals. Materials Science and Engineering: C 29:1609-1615
[11]  Chaen S, Yamamoto N, Shirakawa I, Sugi H. 2001. Effect of deuterium oxide on actomyosin motility in vitro. Biochimica et Biophysica Acta 1506:218-223
[12]  Chaen S, Yamamoto N, Shirakawa I, Sugi H. 2003. In vitro actomyosin motility in deuterium oxide. Molecular and Cellular Aspects of Muscle Contraction 538:183-192
[13]  Chakrabarti G, Kim S, Gupta ML, Barton JS, Himes RH. 1999. Stabilization of tubulin by deuterium oxide. Biochemistry 38:3067-3072
[14]  Cho C, Singh S, Robinson GW. 1996. Liquid water and biological systems: the most important problem in science that hardly anyone wants to see solved. Faraday Discussions 103:19-27
[15]  Covington AK, Paabo M, Robinson RA, Bates RG. 1968. Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water. Analytical Chemistry 40:700-706
[16]  Desai A, Mitchison TJ. 1997. Microtubule polymerization dynamics. Annual Review of Cell and Developmental Biology 13:83-117
[17]  Foss M, Wilcox BWL, Alsop GB, Zhang D. 2008. Taxol crystals can masquerade as stabilized microtubules. PLoS ONE 3:e1476
[18]  Gagliano J, Walb M, Blaker B, Macosko JC, Holzwarth G. 2010. Kinesin velocity increases with the number of motors pulling against viscoelastic drag. European Biophysics Journal 39:801-813
[19]  Guydosh NR, Block SM. 2009. Direct observation of the binding state of the kinesin head to the microtubule. Nature 461:125-128
[20]  Hackney DD, Stempel KE, Boyer PD. 1980. Oxygen-18 probes of enzymic reactions of phosphate compounds. Methods in Enzymology 64:60-83
[21]  Hardy RC, Cottington RL. 1949. Viscosity of deuterium oxide and water from 5°to 125 °C. The Journal of Chemical Physics 17:509-510
[22]  Hess H, Clemmens J, Brunner C, Doot R, Luna S, Ernst K-H, Vogel V. 2005. Molecular self-assembly of nanowires and “nanospools” using active transport. Nano Letters 5:629-633
[23]  Highsmith S. 1977. The effects of temperature and salts on myosin subfragment-1 and F-actin association. Archives of Biochemistry and Biophysics 180:404-408
[24]  Highsmith S, Duignan K, Cooke R, Cohen J. 1996. Osmotic pressure probe of actin–myosin hydration changes during ATP hydrolysis. Biophysical Journal 70:2830-2837
[25]  Hotta K, Morales MF. 1960. Myosin B nucleoside triphosphatase in deuterium oxide. Journal of Biological Chemistry 235:PC61-PC63
[26]  Houston LL, Odell J, Lee YC, Himes RH. 1974. Solvent isotope effects on microtubule and depolymerization polymerization. Journal of Molecular Biology 87:141-146
[27]  Inoue A, Fukushima Y, Tonomura Y. 1975. Effects of deuterium oxide on elementary steps in the ATPase reactions evidence for the similarity of key intermediates in contractile and transport ATPase. The Journal of Biochemistry 78:1113-1121
[28]  Israelachvili J, Wennerstrm H. 1996. Role of hydration and water structure in biological and colloidal interactions. Nature 379:219-225
[29]  Kim E, Byun K-E, Choi DS, Lee DJ, Cho DH, Lee BY, Yang H, Heo J, Chung H-J, Seo S, Hong S. 2013. Electrical control of kinesin–microtubule motility using a transparent functionalized-graphene substrate. Nanotechnology 24:195102
[30]  Kudish AI, Wolf D, Steckel F. 1972. Physical properties of heavy-oxygen water. Journal of the Chemical Society, Faraday Transactions 1 68:2041-2046
[31]  Kushner DJ, Baker A, Dunstall TG. 1999. Pharmacological uses and perspectives of heavy water and deuterated compounds. Canadian Journal of Physiology and Pharmacology 77:79-88
[32]  Lewis GN. 1933. The biochemistry of water containing hydrogen isotope. Journal of the American Chemical Society 55:3503-3504
[33]  Lewis GN. 1934. The biology of heavy water. Science 79:151-153
[34]  Maloney A, Herskowitz LJ, Koch SJ. 2011. Effects of surface passivation on gliding motility assays. PLoS ONE 6:e19522
[35]  Ma Y-Z, Taylor EW. 1997. Interacting head mechanism of microtubule-kinesin ATPase. The Journal of Biological Chemistry 272:724-730
[36]  Miller-Jaster KN, Petrie Aronin CE, Guilford WH. 2012. A quantitative comparison of blocking agents in the in vitro motility assay. Cellular and Molecular Bioengineering 5:44-51
[37]  Moyer ML, Gilbert SP, Johnson KA. 1998. Pathway of ATP hydrolysis by monomeric and dimeric kinesin. Biochemistry 37:800-813
[38]  Muthukrishnan G, Zhang Y, Shastry S, Hancock WO. 2009. The processivity of kinesin-2 motors suggests diminished front-head gating. Current Biology 19:442-447
[39]  Nemet BA, Shabtai Y, Cronin-Golomb M. 2002. Imaging microscopic viscosity with confocal scanning optical tweezers. Optics Letters 27:264-266
[40]  Olmstedt JB, Borisy GG. 1975. Ionic and nucleotide requirements for microtubule polymerization in vitro? Biochemistry 14:2996-3005
[41]  Panda D, Chakrabarti G, Hudson J, Pigg K, Miller HP, Wilson L, Himes RH. 2000. Suppression of microtubule dynamic instability and treadmilling by deuterium oxide. Biochemistry 39:5075-5081
[42]  Parsegian VA, Rand RP, Rau DC. 2000. Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proceedings of the National Academy of Sciences of the United States of America 97:3987-3992
[43]  Parsegian VA, Rand RP, Rau DC. 1995. Macromolecules and water: probing with osmotic stress. Methods in Enzymology 259:43-94
[44]  Pittendrigh CS, Cosbey ES. 1974. On the very rapid enhancement by D2O of the temperature-tolerance of adult Drosophila. Proceedings of the National Academy of Sciences of the United States of America 71:540-543
[45]  Sen A, Balamurugan V, Rajak KK, Chakravarti S, Bhanuprakash V, Singh RK. 2009. Role of heavy water in biological sciences with an emphasis on thermostabilization of vaccines. Expert Review of Vaccines 8:1587-1602
[46]  Shelanski ML, Gaskint F, Cantort CR. 1973. Microtubule assembly in the absence of added nucleotides. Proceedings of the National Academy of Sciences of the United States of America 70:765-768
[47]  Sidorova NY, Rau DC. 2001. Linkage of EcoRI dissociation from its specific DNA recognition site to water activity, salt concentration, and pH: separating their roles in specific and non-specific binding. Journal of Molecular Biology 310:801-816
[48]  Silverman BW. 1986. Density estimation for statistics and data analysis (1st ed). New York: Chapman and Hall.
[49]  Sinha S, Ray AK, Kundu S, Sasikumar S, Dasgupta K. 2002. Heavy-water-based solutions of rhodamine dyes: photophysical properties and laser operation. Applied Physics B 75:85-90
[50]  Somlyai G, Jancsó G, Jákli G, Vass K, Barna B, Lakics V, Gaál T. 1993. Naturally occurring deuterium is essential for the normal growth rate of cells. FEBS Letters 317:1-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133