We report the growth of silver nanowires with varying diameters in porous anodic aluminum-oxide (AAO) membranes by using the electroless deposition approach. This objective is carried out in 2 phases. In Phase 1, AAO membranes on high purity aluminum foils are electrochemically grown by a double anodization procedure. Three different electrolytes, sulphuric acid (H2SO4), oxalic acid (H2C2O4) and phosphoric acid (H3PO4), are employed to produce membranes with varying pore diameters. Other parameters such as interpore distance, barrier layer thickness and membrane thickness are also explored. In addition, characterization to modify the pore diameter and open the barrier layer of free standing AAO templates has been carried out. In Phase 2, metallic silver nanowires are grown by electroless deposition inside pores with varying diameters in AAO membranes. AAO membranes immersed in aqueous silver nitrate solutions are thermally reduced, and the resulting silver nanowires are characterized by using a scanning electron microscope (SEM).
References
[1]
Jie, F., Cherevko, S. and Chung, C.-H. (2008) Electroplating of Metal Nanotubes and Nanowires in a High Aspect-Ratio Nanotemplate. Electrochemistry Communications, 10, 514-518. http://dx.doi.org/10.1016/j.elecom.2008.01.015
[2]
Chu, S.Z., Wada, K., Inoue, S. and Todoroki, S. (2003) Fabrication of Oxide Nanostructures on Glass by Aluminum Anodization and Solgel Process. Surface and Coatings Technology, 169-170, 190-194. http://dx.doi.org/10.1016/S0257-8972(03)00057-4
[3]
Moon, J.-M. and Wei, A. (2005) Uniform Gold Nanorod Arrays from Polyethylenimine-Coated Alumina Templates. Journal of Physical Chemistry B, 109, 23336-23341. http://dx.doi.org/10.1021/jp054405n
[4]
Chen, P.-L., Kuo, C.-T., Pan, F.-M. and Tsai, T.-G. (2004) Preparation and Phase Transformation of Highly Ordered TiO2 Nanodot Arrays on Sapphire Substrates. Applied Physics Letters, 84, 3888-3890. http://dx.doi.org/10.1063/1.1738941
[5]
Juang, J.-Y. and Bogy, D.B. (2005) Nanotechnology Advances and Applications in Information Storage. Microsystem Technologies, 11, 950-957.
[6]
Casse, B.D.F., Lu, W.T., Huang, Y.J., Gultepe, E., Menon, L., et al. (2010) Super-Resolution Imaging Using a Three-Dimensional Metamaterials Nanolens. Applied Physics Letters, 96, Article ID: 023114.
[7]
Chu, S.Z., Wada, K., Inoue, S., Isogai, M., Katsuta, Y., et al. (2006) Large-Scale Fabrication of Ordered Nanoporous Alumina Films with Arbitrary Pore Intervals by Critical-Potential Anodization. Journal of the Electrochemical Society, 153, 384-391. http://dx.doi.org/10.1149/1.2218822
[8]
Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B. and Gosele, U. (2002) Self-Ordering Regimes of Porous Alumina: The 10% Porosity Rule. Nano Letters, 2, 677-680. http://dx.doi.org/10.1021/nl025537k
[9]
Li, A.P., Müller, F., Birner, A., Nielsch, K. and Gosele, U. (1998) Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Selforganization in Anodic Alumina. Journal of Applied Physics, 84, 6023-6026. http://dx.doi.org/10.1063/1.368911
[10]
Li, A.P., Müller, F. and Gosele, U. (2000) Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina. Electrochemical and Solid-State Letters, 3, 131-134. http://dx.doi.org/10.1149/1.1390979
[11]
Yan, J., Rao, G.V.R., Barela, M., Brevnov, D.A., Jiang, Y., et al. (2003) Growth of Patterned Nanopore Arrays of Anodic Aluminum Oxide. Advanced Materials, 15, 2015-2018. http://dx.doi.org/10.1002/adma.200305360
[12]
Yin, A.J., Li, J., Jian, W., Bennett, A.J. and Xu, J.M. (2001) Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition. Applied Physics Letters, 79, 1039-1041. http://dx.doi.org/10.1063/1.1389765
[13]
Nielsch, K., Müller, F., Li, A.-P. and Gosele, U. (2000) Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition. Advanced Materials, 12, 582-586. http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
[14]
Kim, Y.-H., Han, Y.-H., Lee, H.-J. and Lee, H.-B. (2008) High Density Silver Nanowire Arrays Using Self-Ordered Anodic Aluminum Oxide (AAO) Membrane. Journal of the Korean Ceramic Society, 45, 191-195. http://dx.doi.org/10.4191/KCERS.2008.45.4.191
[15]
Masuda, H. and Satoh, M. (1996) Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask. Japanese Journal of Applied Physics, Part 2: Letters, 35, L126-L129. http://dx.doi.org/10.1143/JJAP.35.L126
[16]
Han, C.Y., Willing, G.A., Xiao, Z.L. and Hau Wang, H. (2007) Control of the Anodic Aluminum Oxide Barrier Layer Opening Process by Wet Chemical Etching. Langmuir, 23, 1564-1568. http://dx.doi.org/10.1021/la060190c
[17]
Gong, J., Butler, W.H. and Zangari, G. (2010) Tailoring Morphology in Free-Standing Anodic Aluminium Oxide: Control of Barrier Layer Opening Down to the Sub-10 nm Diameter. Nanoscale, 2, 778-785. http://dx.doi.org/10.1039/c0nr00055h
[18]
Xu, T., Zangari, G. and Metzger, R.M. (2002) Periodic Holes with 10 nm Diameter Produced by Grazing Ar+ Milling of the Barrier Layer in Hexagonally Ordered Nanoporous Alumina. Nano Letters, 2, 37-41. http://dx.doi.org/10.1021/nl010075g
[19]
Xu, T.T., Piner, R.D. and Ruoff, R. (2003) An Improved Method to Strip Aluminum from Porous Anodic Alumina Films. Langmuir, 19, 1443-1445.