全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2015 

Glitazone Treatment and Incidence of Parkinson’s Disease among People with Diabetes: A Retrospective Cohort Study

DOI: 10.1371/journal.pmed.1001854

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Recent in vitro and animal experiments suggest that peroxisome proliferation-activated receptor gamma (PPAR?) agonist medications, such as antidiabetic glitazone (GTZ) drugs, are neuroprotective in models of Parkinson’s disease (PD). These findings have not been tested in humans. We hypothesized that individuals prescribed GTZ drugs would have a lower incidence of PD compared to individuals prescribed other treatments for diabetes. Methods and Findings Using primary care data from the United Kingdom Clinical Practice Research Datalink (CPRD), we conducted a retrospective cohort study in which individuals with diabetes who were newly prescribed GTZ (GTZ-exposed group) were matched by age, sex, practice, and diabetes treatment stage with up to five individuals prescribed other diabetes treatments (other antidiabetic drug-exposed group). Patients were followed up from 1999 until the first recording of a PD diagnosis, end of observation in the database, or end of the study (1 August 2013). An incidence rate ratio (IRR) was calculated using conditional Poisson regression, adjusted for possible confounders. 44,597 GTZ exposed individuals were matched to 120,373 other antidiabetic users. 175 GTZ-exposed individuals were diagnosed with PD compared to 517 individuals in the other antidiabetic drug-exposed group. The incidence rate (IR) of PD in the GTZ-exposed group was 6.4 per 10,000 patient years compared with 8.8 per 10,000 patient years in those prescribed other antidiabetic treatments (IRR 0.72, 95% confidence interval [CI] 0.60–0.87). Adjustments for potential confounding variables, including smoking, other medications, head injury, and disease severity, had no material impact (fully adjusted IRR 0.75, 0.59–0.94). The risk was reduced in those with current GTZ prescriptions (current GTZ-exposed IRR 0.59, 0.46–0.77) but not reduced among those with past prescriptions (past GTZ-exposed IRR 0.85, 0.65–1.10). Our study only included patients with diabetes who did not have a PD diagnosis when they were first prescribed GTZ, and thus, it cannot establish whether GTZ use prevents or slows the progression of PD. Conclusions In patients with diabetes, a current prescription for GTZ is associated with a reduction in incidence of PD. This suggests PPAR gamma pathways may be a fruitful drug target in PD.

References

[1]  Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov Disord. 2014 Nov;29(13):1583–90. doi: 10.1002/mds.25945. pmid:24976103
[2]  Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free radical biology & medicine. 2013 Sep;62:132–44. doi: 10.1016/j.freeradbiomed.2013.01.018
[3]  Jenner P, Olanow CW. The pathogenesis of cell death in Parkinson's disease. Neurology. 2006 May 23;66(10 Suppl 4):S24–36. pmid:16717250 doi: 10.1212/wnl.66.10_suppl_4.s24
[4]  Carta AR, Frau L, Pisanu A, Wardas J, Spiga S, Carboni E. Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson's disease model. Neuroscience. 2011 Oct 27;194:250–61. doi: 10.1016/j.neuroscience.2011.07.046. pmid:21839812
[5]  Sadeghian M, Marinova-Mutafchieva L, Broom L, Davis JB, Virley D, Medhurst AD, et al. Full and partial peroxisome proliferation-activated receptor-gamma agonists, but not delta agonist, rescue of dopaminergic neurons in the 6-OHDA parkinsonian model is associated with inhibition of microglial activation and MMP expression. Journal of neuroimmunology. 2012 May 15;246(1–2):69–77. doi: 10.1016/j.jneuroim.2012.03.010. pmid:22498097
[6]  Hetzel M, Walcher D, Grub M, Bach H, Hombach V, Marx N. Inhibition of MMP-9 expression by PPARgamma activators in human bronchial epithelial cells. Thorax. [Research Support, Non-U.S. Gov't]. 2003 Sep;58(9):778–83. pmid:12947137 doi: 10.1136/thorax.58.9.778
[7]  Herrett E, Thomas SL, Schoonen WM, Smeeth L, Hall AJ. Validation and validity of diagnoses in the General Practice Research Database: a systematic review. British journal of clinical pharmacology. 2010 Jan;69(1):4–14. doi: 10.1111/j.1365-2125.2009.03537.x. pmid:20078607
[8]  Garcia Rodriguez LA, Perez Gutthann S. Use of the UK General Practice Research Database for pharmacoepidemiology. British journal of clinical pharmacology. 1998 May;45(5):419–25. pmid:9643612 doi: 10.1046/j.1365-2125.1998.00701.x
[9]  Williams T, van Staa T, Puri S, Eaton S. Recent advances in the utility and use of the General Practice Research Database as an example of a UK Primary Care Data resource. Therapeutic Advances in Drug Safety. 2012 Apr;3:89–99. doi: 10.1177/2042098611435911. pmid:25083228
[10]  van der Mark M, Nijssen PC, Vlaanderen J, Huss A, Mulleners WM, Sas AM, et al. A case-control study of the protective effect of alcohol, coffee, and cigarette consumption on Parkinson disease risk: time-since-cessation modifies the effect of tobacco smoking. PLoS ONE. [Research Support, Non-U.S. Gov't]. 2014;9(4):e95297. doi: 10.1371/journal.pone.0095297. pmid:24788751
[11]  Morens DM, Grandinetti A, Reed D, White LR, Ross GW. Cigarette smoking and protection from Parkinson's disease: false association or etiologic clue? Neurology. [Research Support, U.S. Gov't, P.H.S.Review]. 1995 Jun;45(6):1041–51. pmid:7783862 doi: 10.1212/wnl.45.6.1041
[12]  Dye RV, Miller KJ, Singer EJ, Levine AJ. Hormone replacement therapy and risk for neurodegenerative diseases. International journal of Alzheimer's disease. 2012;2012:258454. doi: 10.1155/2012/258454. pmid:22548198
[13]  Becker C, Jick SS, Meier CR. Use of antihypertensives and the risk of Parkinson disease. Neurology. [Comparative Study]. 2008 Apr 15;70(16 Pt 2):1438–44. doi: 10.1212/01.wnl.0000303818.38960.44. pmid:18256367
[14]  Marras C, Hincapie CA, Kristman VL, Cancelliere C, Soklaridis S, Li A, et al. Systematic review of the risk of Parkinson's disease after mild traumatic brain injury: results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Archives of physical medicine and rehabilitation . [Research Support, Non-U.S. Gov't Review]. 2014 Mar;95(3 Suppl):S238–44. doi: 10.1016/j.apmr.2013.08.298. pmid:24581909
[15]  Litvan I, Halliday G, Hallett M, Goetz CG, Rocca W, Duyckaerts C, et al. The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. Journal of neuropathology and experimental neurology. [Review]. 2007 Apr;66(4):251–7. pmid:17413315 doi: 10.1097/nen.0b013e3180415e42
[16]  Hu G, Jousilahti P, Nissinen A, Antikainen R, Kivipelto M, Tuomilehto J. Body mass index and the risk of Parkinson disease. Neurology. [Comparative Study Research Support, Non-U.S. Gov't]. 2006 Dec 12;67(11):1955–9. pmid:17159100 doi: 10.1212/01.wnl.0000247052.18422.e5
[17]  Lu L, Fu DL, Li HQ, Liu AJ, Li JH, Zheng GQ. Diabetes and risk of Parkinson's disease: an updated meta-analysis of case-control studies. PLoS ONE. 2014;9(1):e85781. doi: 10.1371/journal.pone.0085781. pmid:24465703
[18]  Wahlqvist ML, Lee MS, Hsu CC, Chuang SY, Lee JT, Tsai HN. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson's disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism & related disorders. [Research Support, Non-U.S. Gov't]. 2012 Jul;18(6):753–8. doi: 10.1016/j.parkreldis.2012.03.010
[19]  Sadeghian M, Camarata MA, Broom L, Bindra H, Davis JB, Medhurst AD, et al. Microglial activation in the 6-hydroxydopamine Parkinson's disease model is associated with a time dependent increase in neuronal expression of MMP-3 and MMP-9 and a dissociation of the CD200R neuronal/microglial complex. J Neuroinflammation.
[20]  Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA: the journal of the American Medical Association. [Meta-Analysis]. 2007 Sep 12;298(10):1189–95. doi: 10.1001/jama.298.10.1189
[21]  U.S. Food and Drug Administration. FDA requires removal of some prescribing and dispensing restrictions for rosiglitazone-containing diabetes medicines FDA Drug Safety Communications [serial on the Internet]. [cited October 2014: .
[22]  Azoulay L, Yin H, Filion KB, Assayag J, Majdan A, Pollak MN, et al. The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case-control study. BMJ. [Research Support, Non-U.S. Gov't]. 2012;344:e3645. doi: 10.1136/bmj.e3645. pmid:22653981
[23]  Lewis JD, Habel L, Quesenberry C, Mamtani R, Peng T, Bilker WB, et al. Proteinuria testing among patients with diabetes mellitus is associated with bladder cancer diagnosis: potential for unmeasured confounding in studies of pioglitazone and bladder cancer. Pharmacoepidemiology and drug safety. 2014 Jun;23(6):636–45. doi: 10.1002/pds.3619. pmid:24764283
[24]  Randy LH, Guoying B. Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinson's Disease. Current neuropharmacology. 2007 Mar;5(1):35–46. pmid:18615152 doi: 10.2174/157015907780077123
[25]  Pagel-Langenickel I, Bao J, Joseph JJ, Schwartz DR, Mantell BS, Xu X, et al. PGC-1alpha integrates insulin signaling, mitochondrial regulation, and bioenergetic function in skeletal muscle. The Journal of biological chemistry. 2008 Aug 15;283(33):22464–72. doi: 10.1074/jbc.M800842200. pmid:18579525
[26]  Miglio G, Rosa AC, Rattazzi L, Collino M, Lombardi G, Fantozzi R. PPARgamma stimulation promotes mitochondrial biogenesis and prevents glucose deprivation-induced neuronal cell loss. Neurochemistry international. 2009 Dec;55(7):496–504. doi: 10.1016/j.neuint.2009.05.001. pmid:19442697
[27]  Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, et al. Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Experimental neurology. 2011 Jan;227(1):128–35. doi: 10.1016/j.expneurol.2010.10.003. pmid:20965168
[28]  Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med. [Meta-Analysis Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2010 Oct 6;2(52):52ra73.
[29]  Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2011 Mar 4;144(5):689–702. doi: 10.1016/j.cell.2011.02.010. pmid:21376232
[30]  Hernan MA, Logroscino G, Rodriguez LA. A prospective study of alcoholism and the risk of Parkinson's disease. Journal of neurology. 2004 Oct;251 Suppl 7:vII14–7. pmid:15505749 doi: 10.1007/s00415-004-1705-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133