Background Countries are increasingly considering how to reduce or even end tobacco consumption, and raising tobacco taxes is a potential strategy to achieve these goals. We estimated the impacts on health, health inequalities, and health system costs of ongoing tobacco tax increases (10% annually from 2011 to 2031, compared to no tax increases from 2011 [“business as usual,” BAU]), in a country (New Zealand) with large ethnic inequalities in smoking-related and noncommunicable disease (NCD) burden. Methods and Findings We modeled 16 tobacco-related diseases in parallel, using rich national data by sex, age, and ethnicity, to estimate undiscounted quality-adjusted life-years (QALYs) gained and net health system costs over the remaining life of the 2011 population (n = 4.4 million). A total of 260,000 (95% uncertainty interval [UI]: 155,000–419,000) QALYs were gained among the 2011 cohort exposed to annual tobacco tax increases, compared to BAU, and cost savings were US$2,550 million (95% UI: US$1,480 to US$4,000). QALY gains and cost savings took 50 y to peak, owing to such factors as the price sensitivity of youth and young adult smokers. The QALY gains per capita were 3.7 times greater for Māori (indigenous population) compared to non-Māori because of higher background smoking prevalence and price sensitivity in Māori. Health inequalities measured by differences in 45+ y-old standardized mortality rates between Māori and non-Māori were projected to be 2.31% (95% UI: 1.49% to 3.41%) less in 2041 with ongoing tax rises, compared to BAU. Percentage reductions in inequalities in 2041 were maximal for 45–64-y-old women (3.01%). As with all such modeling, there were limitations pertaining to the model structure and input parameters. Conclusions Ongoing tobacco tax increases deliver sizeable health gains and health sector cost savings and are likely to reduce health inequalities. However, if policy makers are to achieve more rapid reductions in the NCD burden and health inequalities, they will also need to complement tobacco tax increases with additional tobacco control interventions focused on cessation.
References
[1]
Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859): 2224–2260. doi: 10.1016/S0140-6736(12)61766-8. pmid:23245609
[2]
Beaglehole R, Bonita R, Ezzati M, Alleyne G, Dain K, Kishore SP, et al. NCD Countdown 2025: accountability for the 25 x 25 NCD mortality reduction target. Lancet. 2014;384(9938): 105–107. doi: 10.1016/S0140-6736(14)61091-6. pmid:25012115
[3]
IARC. Effectiveness of tax and price policies for tobacco control. IARC handbooks of cancer prevention in tobacco control, Volume 14. Lyon: International Agency for Research on Cancer (IARC); 2011.
[4]
van Baal P, Meltzer D, Brouwer W. Future costs, fixed healthcare budgets, and the decision rules of cost-effectiveness analysis. Health Econ. 2014; E-pub ahead of print. doi: 10.1002/hec.3138.
[5]
Cobiac LJ, Ikeda T, Nghiem N, Blakely T, Wilson N. Modelling the implications of regular increases in tobacco taxation in the tobacco endgame. Tob control. 2015;24: e154–160 doi: 10.1136/tobaccocontrol-2014-051543. pmid:25145342
[6]
The Parliament of the Commonwealth of Australia. Excise tariff amendment (tobacco) bill 2014. Canberra: The Parliament of the Commonwealth of Australia. . Accessed 22 June 2014
[7]
Hanewinkel R, Isensee B. Five in a row—reactions of smokers to tobacco tax increases: population-based cross-sectional studies in Germany 2001–2006. Tob Control. 2007;16(1): 34–37. pmid:17297071 doi: 10.1136/tc.2006.017236
[8]
Over EA, Feenstra TL, Hoogenveen RT, Droomers M, Uiters E, van Gelder BM. Tobacco control policies specified according to socioeconomic status: health disparities and cost-effectiveness. Nicotine Tob Res. 2014;16(6): 725–732. doi: 10.1093/ntr/ntt218. pmid:24388862
[9]
Brown T, Platt S, Amos A. Equity impact of population-level interventions and policies to reduce smoking in adults: a systematic review. Drug Alcohol Depend. 2014;138: 7–16. doi: 10.1016/j.drugalcdep.2014.03.001. pmid:24674707
[10]
Brown T, Platt S, Amos A. Equity impact of interventions and policies to reduce smoking in youth: systematic review. Tob Control. 2014; 23:e2 e98–e105 doi: 10.1136/tobaccocontrol-2013-051451
[11]
Ministry of Social Affairs and Health. Roadmap to a tobacco-free Finland: Action plan on tobacco control. Helsinki: Ministry of Social Affairs and Health; 2014.
[12]
Department of Health. Tobacco Free Ireland—report of the tobacco policy review group. Dublin: Department of Health; 2013.
[13]
The Scottish Government. Creating a tobacco-free generation: A tobacco control strategy for Scotland. Edinburgh: The Scottish Government; 2013.
[14]
World Health Organization Western Pacific Region. Apia communiqué on healthy islands, NCDs and the post-2015 development agenda—tenth pacific health ministers meeting 2013. . Accessed 5 May 2015.
[15]
New Zealand Parliament. Government response to the report of the Māori Affairs Select Committee on its inquiry into the tobacco industry in Aotearoa and the consequences of tobacco use for Māori (final response). Wellington: New Zealand Parliament; 2011.
[16]
van der Deen FS, Ikeda T, Cobiac L, Wilson N, Blakely T. Projecting future smoking prevalence to 2025 and beyond in New Zealand using smoking prevalence data from the 2013 census. N Z Med J. 2014;127(1406): 71–79. pmid:25447251
[17]
Tobias M, Blakely T, Matheson D, Rasanathan K, Atkinson J. Changing trends in indigenous inequalities in mortality: lessons from New Zealand. Int J Epidemiol. 2009;38(6): 1711–1722. doi: 10.1093/ije/dyp156. pmid:19332501
[18]
Blakely T, Fawcett J, Hunt D, Wilson N. What is the contribution of smoking and socioeconomic position to ethnic inequalities in mortality in New Zealand? Lancet. 2006;368(9529): 44–52. pmid:16815379 doi: 10.1016/s0140-6736(06)68813-2
[19]
Blakely T, Thomson G, Wilson N, Edwards R, Gifford H. The Māori Affairs Select Committee Inquiry and the road to a smokefree Aotearoa. N Z Med J. 2010;123(1326): 7–18. pmid:21326394
[20]
Edwards R, Hoek J, van der Deen FS. Smokefree 2025—use of mass media in New Zealand lacks alignment with evidence and needs. Aust N Z J Public Health. 2014;38(4): 395–396. doi: 10.1111/1753-6405.12246. pmid:24961155
[21]
Blakely T, Barendregt JJ, Foster RH, Hill S, Atkinson J, Sarfati D, et al. The association of active smoking with multiple cancers: national census-cancer registry cohorts with quantitative bias analysis. CCC. 2013;24: 1243–1255. doi: 10.1007/s10552-013-0204-2. pmid:23580085
[22]
Barendregt J, Oortmarssen GJ, Vos T, Murray CJL. A generic model for the assessment of disease epidemiology: the computational basis of DisMod II. Popul Health Metr. 2003;1(1): 4. pmid:12773212
[23]
Ministry of Health. Health Loss in New Zealand: A report from the New Zealand Burden of Diseases, Injuries and Risk Factors Study, 2006–2016. Wellington: Ministry of Health; 2013.
[24]
Woodward A, Blakely T. The healthy country? A history of life and death in New Zealand. Auckland: University of Auckland Press; 2014.
[25]
Costilla R, Atkinson J, Blakely T. Incorporating ethnic and deprivation variation to cancer incidence estimates over 2006–2026 for ABC-CBA. Wellington: Department of Public Health, University of Otago, Wellington; 2011.
[26]
Blakely T, Costilla R, Soeberg M. Cancer excess mortality rates over 2006–2026 for ABC-CBA. Wellington: Department of Public Health, University of Otago, Wellington; 2012.
[27]
Wilson N, Nghiem N, Foster R, Cobiac L, Blakely T. Estimating the cost of new public health legislation. Bull World Health Organ. 2012;90: 532–539. doi: 10.2471/BLT.11.097584. pmid:22807599
[28]
Ikeda T, Cobiac L, Wilson N, Carter K, Blakely T. What will it take to get to under 5% smoking prevalence by 2025? Modelling in a country with a smokefree goal. Tob Control. 2015;24: 139–145. doi: 10.1136/tobaccocontrol-2013-051196. pmid:24072392
[29]
Verguet S, Gauvreau CL, Mishra S, MacLennan M, Murphy SM, Brouwer ED, et al. The consequences of tobacco tax on household health and finances in rich and poor smokers in China: an extended cost-effectiveness analysis. Lancet Glob Health. 2015;3(4): e206–16. doi: 10.1016/S2214-109X(15)70095-1. pmid:25772692
[30]
Grace RC, Kivell BM, Laugesen M. Predicting decreases in smoking with a cigarette purchase task: evidence from an excise tax rise in New Zealand. Tob Control. 2014. doi: 10.1136/tobaccocontrol-2014-051594.
[31]
Ni Mhurchu C, Eyles H, Schilling C, Yang Q, Kaye-Blake W, Genc M, et al. Food prices and consumer demand: differences across income levels and ethnic groups. PLoS ONE. 2013;8(10): e75934. doi: 10.1371/journal.pone.0075934. pmid:24098408
[32]
Hunt D, Blakely T, Woodward A, Wilson N. The smoking-mortality association varies over time and by ethnicity in New Zealand. Int J Epidemiol. 2005;34: 1020–1028. pmid:16030152 doi: 10.1093/ije/dyi139
[33]
Thun M, Apicella L, Henley S. Smoking vs other risk factors as the cause of smoking-attributable deaths: confounding in the courtroom. JAMA. 2000;284(6): 706–712. pmid:10927778 doi: 10.1001/jama.284.6.706
[34]
Hoogenveen R, van Baal P, Boshuizen H, Feenstra T. Dynamic effects of smoking cessation on disease incidence, mortality and quality of life: The role of time since cessation. Cost Eff Resour Alloc. 2008;6: 1. doi: 10.1186/1478-7547-6-1. pmid:18190684
[35]
Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M, Mokdad A, et al. Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859): 2129–2143. doi: 10.1016/S0140-6736(12)61680-8. pmid:23245605
[36]
van Baal PHM, Feenstra TL, Polder JJ, Hoogenveen RT, Brouwer WBF. Economic evaluation and the postponement of health care costs. Health Econ. 2011;20(4): 432–445. doi: 10.1002/hec.1599. pmid:21210494
[37]
McLeod M, Blakely T, Kvizhinadze G, Harris R. Why equal treatment is not always equitable: the impact of existing ethnic health inequalities in cost-effectiveness modeling. Popul Health Metr. 2014;12(1): 15. doi: 10.1186/1478-7954-12-15
[38]
Kivim?ki M, Shipley MJ, Ferrie JE, Singh-Manoux A, Batty GD, Chandola T, et al. Best-practice interventions to reduce socioeconomic inequalities of coronary heart disease mortality in UK: a prospective occupational cohort study. Lancet. 2008;372(9650): 1648–1654. doi: 10.1016/S0140-6736(08)61688-8. pmid:18994662
[39]
Capewell S, Graham H. Will Cardiovascular Disease Prevention Widen Health Inequalities? PLoS Med. 2010;7(8): e1000320. doi: 10.1371/journal.pmed.1000320. pmid:20811492
[40]
Gallet CA. Can price get the monkey off our back? A meta-analysis of illicit drug demand. Health economics. 2014;23(1): 55–68. doi: 10.1002/hec.2902. pmid:23303721
[41]
Wilson N, Edwards R, Parry R. A persisting secondhand smoke hazard in urban public places: results from fine particulate (PM2.5) air sampling. N Z Med J. 2011;124(1330): 34–47. pmid:21681251
[42]
Thomson G, Wilson N, Bushell L, Al Matar W, Ball B, Chiu J, et al. Butt lengths differ by area deprivation level: a field study to explore intensive smoking. Nicotine Tob Res. 2008;10(5): 927–931. doi: 10.1080/14622200802027222. pmid:18569769
[43]
Grace RC, Kivell BM, Laugesen M. Estimating cross-price elasticity of e-cigarettes using a simulated demand procedure. Nicotine Tob Res. 2015;17(5): 592–598. doi: 10.1093/ntr/ntu268. pmid:25548256
[44]
Jimenez S, Labeaga JM. Is it possible to reduce tobacco consumption via alcohol taxation? Health Econ. 1994;3(4): 231–241. pmid:7994323 doi: 10.1002/hec.4730030405
[45]
Lee JM, Chen MG, Hwang TC, Yeh CY. Effect of cigarette taxes on the consumption of cigarettes, alcohol, tea and coffee in Taiwan. Public Health. 2010;124(8): 429–436. doi: 10.1016/j.puhe.2010.04.008. pmid:20655077
[46]
Young-Wolff KC, Kasza KA, Hyland AJ, McKee SA. Increased cigarette tax is associated with reductions in alcohol consumption in a longitudinal U.S. sample. Alcohol Clin Exp Res. 2014;38(1): 241–248. doi: 10.1111/acer.12226. pmid:23930623
[47]
Wilson N, Thomson G, Tobias M, Blakely T. How much downside? Quantifying the relative harm from tobacco taxation. J Epidemiol Comm Health. 2004;58(6): 451–454. doi: 10.1136/jech.2003.011528
[48]
Bala MM, Strzeszynski L, Topor-Madry R, Cahill K. Mass media interventions for smoking cessation in adults. Cochrane Database Syst Rev 6. 2013;6: CD004704. doi: 10.1002/14651858.cd004704.pub3
[49]
Donny EC, Hatsukami DK, Benowitz NL, Sved AF, Tidey JW, Cassidy RN. Reduced nicotine product standards for combustible tobacco: Building an empirical basis for effective regulation. Prev Med. 2014;67: 17–22. doi: 10.1016/j.ypmed.2014.06.020
[50]
Pearson AL, van der Deen FS, Wilson N, Cobiac L, Blakely T. Theoretical impacts of a range of major tobacco retail outlet reduction interventions: modelling results in a country with a smokefree nation goal. Tob Control. 2014;24: e32–338. doi: 10.1136/tobaccocontrol-2013-051362. pmid:25037156
[51]
Warner KE. An endgame for tobacco? Tob Control. 2013;22: i3–i5. doi: 10.1136/tobaccocontrol-2013-050989. pmid:23591502
[52]
Nghiem N, Blakely T, Cobiac L, Pearson A, Wilson N. Health and economic impacts of eight different dietary salt reduction interventions. PLoS ONE. 2015;10(4): e0123915. doi: 10.1371/journal.pone.0123915. pmid:25910259
[53]
Blakely T, Kvizhinadze G, Karvonen T, Pearson AL, Smith M, Wilson N. Cost-effectiveness and equity impacts of three HPV vaccination programmes for school-aged girls in New Zealand. Vaccine. 2014;32: 2645–2656. doi: 10.1016/j.vaccine.2014.02.071. pmid:24662710