全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Narrowband Interference on Galileo E1 Signal Receiver Performance

DOI: 10.1155/2011/959871

Full-Text   Cite this paper   Add to My Lib

Abstract:

Satellite navigation technology is becoming essential for civil application. The high-accuracy navigation service is demanded. However, the satellite signal may be exposed to the signal from other systems, which are sharing the same frequency band. This is a potential threat for the performance of navigation devices. The aim of this paper is to present an interference impact assessment in the context of global navigation based on the new modulation Composite Binary Offset Carrier (CBOC) that will be used for Galileo E1 civil signal. The focus is on the analysis of the Galileo CBOC-modulated signal robustness against narrowband interference. 1. Introduction Satellite navigation is a process of providing autonomous global geospatial position with coverage all over the world. The navigation technology is essential for several civil applications, such as in the transportation field (e.g., road, rail, and aviation). Other applications, such as precision agriculture, wildlife behavior monitoring, surveying, and time-based applications are also based on the estimation of users’ Position, Velocity, and Time (PVT) [1]. These applications, especially the ones dealing with safety, require high accuracy of users’ PVT estimation. The Global Navigation Satellite Systems (GNSSs) signals are allocated to Radio Navigation Satellite Services (RNSSs) and Aeronautical Radio Navigation Services (ARNSs) on a worldwide coprimary basis. However, the Global Navigation Satellite Systems (GNSSs) signals may be exposed to potential interference from other services that are sharing the similar frequency band. They could likely represent potential threats for GNSS devices. The interference may degrade the GNSS receivers’ performance and compromise the safety. Potential interferences are largely emanated from unintentional source or intentional jamming and spoofing of GNSS signal. Radio frequency interference (RFI) is one of the unintentional interference sources, whose frequency might be located in the satellite signal bands. RFI is normally classified as either wideband or narrowband, depending on whether its bandwidth is large or small relative to the bandwidth of the desired GNSS signal. Wideband interference can be a Gaussian waveform as in the case of Ultra-Wideband (UWB) systems or harmonic from television transmission overcoming the front-end filter of a GNSS receiver [2]. Narrowband interference could originate from Amplitude Modulation (AM) or Frequency Modulation (FM) station. The interference represents an impairing factor in GNSS application mainly due to the low power

References

[1]  B. Motella, S. Savasta, D. Margaria, and F. Dovis, “A method to assess robustness of GPS C/A code in presence of CW interferences,” Hindawi International Journal of Navigation and Observation, vol. 2010, Article ID 294525, 8 pages, 2010.
[2]  E. D. Kaplan and C. Hegarty, Understanding GPS: Principles and Applications, Artech House Publishers, 2nd edition, 2005.
[3]  F. Klinker and O. B. M. Piestersem, Interference of GPS signal, Influence of Licensed Transmitter on GPS signal Quality in the Netherlands’ Airspace, National Aerospace Laboratory, 2000.
[4]  J. W. Betz, “Effect of narrowband interference on GPS code tracking accuracy,” in Proceedings of the 2000 National Technical Meeting of The Institute of Navigation, pp. 16–27, Anaheim, Calif, USA, January 2000.
[5]  J. W. Betz, “Effect of partial-band interference on receiver estimation of C/N0: theory,” in Proceedings of the National Technical Meeting of The Institute of Navigation, pp. 817–828, Long Beach, Calif, USA, January 2001.
[6]  K. R. Kolodziejski and J. W. Betz, “Effect of non-white gaussian interference on GPS code tracking accuracy,” The MITRE Corporation Technical Report MTR99B21R1, 1999.
[7]  H. Chris, T. Michael, and L. Young, “Simplified techniques for analyzing the effects of non-white interference on GPS receivers,” in Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS '02), pp. 620–629, Portland, Ore, USA, September 2002.
[8]  J. A. Avila-Rodriguez, S. Wallner, and G.W. Hein, “CBOC—an implementation of MBOC,” in Proceedings of the 1st CNES Workshop on Galileo Signals and Signal Processing, Tolouse, France, October 2006.
[9]  G. W. Hein, J. A. Avila-Rodriguez, S. Wallner et al., “MBOC: the new optimized spreading modulation recommended for GALILEO L1 OS and GPS L1C,” in Proceedings of the IEEE/ION Position, Location, and Navigation Symposium, pp. 883–892, April 2006.
[10]  E. S. Lohan, “Analytical performance of CBOC-modulated Galileo E1 signal using sine BOC(1,1) receiver for massmarket applications,” in Proceedings of the IEEE PLANS, Position Location and Navigation Symposium, pp. 245–253, Indian Wells, Calif, USA, May 2010.
[11]  J. Zhang and E. S. Lohan, “Multi-correlator structures for tracking Galileo signals with CBOC and SinBOC(1,1) reference receivers and limited front-end bandwidths,” in Proceedings of the 7th Workshop on Positioning, Navigation and Communication (WPNC '10), pp. 179–186, Dresden, Germany, March 2010.
[12]  Simulink open-source software for Galileo E1 signals, Tampere University of Technology, http://www.cs.tut.fi/tlt/pos/Software.htm.
[13]  Galileo Open Service Signal In Space Interface Control Document, (SIS-ICD08), http://www.gsa.europa.eu/go/galileo/os-sis-icd/galileo-open-service-signal-in-space-interface-control-document.
[14]  J. W. Betz, “The Offset Carrier Modulation for GPS modernization,” in Proceedings of the National Technical Meeting of The Institute of Navigation, pp. 639–648, 1999.
[15]  B. A. Siddiqui, J. Zhang, M. Z. H. Bhuiyan, and E. S. Lohan, “Joint Data-Pilot acquisition and tracking of Galileo e 1 Open Service signal,” in Proceedings of the Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS '10), pp. 1–7, October 2010.
[16]  G. Artaud, L. Ries, J. Dantepal, J. Issler, T. Grelier, and A. Delatour, “CBOC performances using software receiver,” in Proceedings of the 2nd Workshop on GNSS Signals & Signal Processing (GNSS SIGNALS '07), Nordwijk, Netherlands, October 2007.
[17]  J. W. Betz and K. R. Kolodziejski, “Extended theory of early-late code tracking for a bandlimited GPS receiver,” Journal of the Institute of Navigation, vol. 47, no. 3, pp. 211–226, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133