1 World Health Organization, Global tuberculosis report 2013. World Health Organization, 2013
[2]
2 Tufariello J M, Chan J, Flynn J L. Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect Dis, 2003, 3: 578-590
[3]
3 Gengenbacher M, Kaufmann S H. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev, 2012, 36: 514-532
[4]
4 Gupta A, Kaul A, Tsolaki A G, et al. Mycobacterium tuberculosis: immune evasion, latency and reactivation. Immunobiology, 2012, 217: 363-374
[5]
5 Walburger A, Koul A, Ferrari G, et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science, 2004, 304: 1800-1804
[6]
6 Cole S T, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393: 537-544
[7]
7 Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: p. 4673-4680
[8]
8 Koul A, Choidas A, Tyagi A K, et al. Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology, 2001, 147: 2307-2314
[9]
9 Tiwari D, Singh R K, Goswami K, et al. Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J Biol Chem, 2009, 284: 27467-27479
[10]
10 Scherr N, Muller P, Perisa D, et al. Survival of pathogenic mycobacteria in macrophages is mediated through autophosphorylation of protein kinase G. J Bacteriol, 2009, 191: 4546-4554
[11]
11 Cowley S, Ko M, Pick N, et al. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol, 2004, 52: 1691-1702
[12]
12 Nguyen L, Walburger A, Houben E, et al. Role of protein kinase G in growth and glutamine metabolism of Mycobacterium bovis BCG. J Bacteriol, 2005, 187: 5852-5856
[13]
13 O''Hare H M, Duran R, Cervenansky C, et al. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol, 2008, 70: 1408-1423
[14]
14 Wolff K A, Nguyen H T, Cartabuke R H, et al. Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrob Agents Chemother, 2009, 53: 3515-3519
[15]
15 Harth G, Lee B Y, Wang J, et al. Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect Immun, 1996, 64: 3038-3047
[16]
16 Nguyen L, Chinnapapagari S, Thompson C J. FbpA-dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol, 2005, 187: 6603-6611
[17]
17 van der Woude A D, Stoop E J, Stiess M, et al. Analysis of SecA2-dependent substrates in Mycobacterium marinum identifies protein kinase G (PknG) as a virulence effector. Cell Microbiol, 2014, 16: 280-295
[18]
18 Scherr N, Honnappa S, Kunz G, et al. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 2007, 104: 12151-12156