全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国河口富营养化对营养盐负荷的敏感性分类

, PP. 455-467

Keywords: 河口,富营养化,敏感性,分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

?沿海区域环境压力日趋加重,基于营养盐负荷响应敏感性对河口进行分类是确定富营养化优先管理对象和级别、进一步实施控制措施的科学基础.选择我国65个代表性河口,利用101个河流入海口断面、260个沿岸点位2007~2012年的系统监测数据及历史资料,基于浮游植物生物量、总氮负荷以及河口物理特征等之间的关系,构建了一个营养盐驱动的浮游植物动力学模型.模型中通过引入河口转化效率参数,量化了各类河口富营养化的生态过滤器效应.利用马尔科夫链蒙特卡罗算法进行贝叶斯分析,模型能较好地估算叶绿素,且对富营养化关键过程的捕食损失速率、沉降速率、碳与叶绿素比率、初级生产力和河口转化效率等5个参数的模拟结果,在收敛性、拟合度和逻辑性方面都比较合理.进一步分析发现,河口转化效率与冲刷效率基本呈负相关.根据转化效率和冲刷效率,可将河口富营养化敏感性分为3类,转化效率小于1.0gC/gN,冲刷效率大于2.0a-1的河口对富营养化不敏感;转化效率在1.0~3.0gC/gN,冲刷效率在0.7~2.0a-1的河口较敏感;转化效率大于3.0gC/gN的河口对富营养化高度敏感,而冲刷效率低于0.7a-1的各类河口敏感性差异较大.高度和中度敏感性河口占67%,其富营养化风险较大,应作为环境监管和污染防治的重点.

References

[1]  李俊龙, 郑丙辉, 刘录三, 等. 2013. 长江口浮游植物群落特征及其与环境的响应关系. 环境科学研究, 26: 403-410
[2]  李玲玲, 于志刚, 姚庆祯. 2009. 长江口海域营养盐的形态和分布特征. 水生态学杂志, 2: 15-21
[3]  林以安, 苏纪兰, 扈传昱, 等. 2004. 珠江口夏季水体中的氮和磷. 海洋学报, 26: 63-74
[4]  林振山, Larry L. 2003. 水生态食物链多平衡态问题的理论研究. 生态学报, 23: 2066-2073
[5]  戚定满. 2001. 长江口水体环境数值研究. 博士后研究工作报告. 上海: 华东师范大学. 19-42
[6]  乔方利, 袁业立, 朱明远. 2000. 长江口海域赤潮生态动力学模型及赤潮控制因子研究. 海洋与湖沼, 31: 93-101
[7]  孙松. 2012. 中国区域海洋学—生物海洋学. 北京: 海洋出版社. 20-500
[8]  魏皓, 田恬, 周锋. 2002. 渤海水交换的数值研究—水质模型对半交换时间的模拟. 青岛海洋大学学报, 32: 519-526
[9]  韦蔓新, 童万平, 何本茂, 等. 2000. 北海湾各种形态氮的分布及其影响因素. 热带海洋, 19: 59-67
[10]  王修林, 李克强, 石晓勇. 2006. 胶州湾主要化学污染物海洋环境容量. 北京: 科学出版社. 140-160
[11]  王先伟, 温伟英, 刘翠梅. 2003. 珠江口及附近海域夏季氮的化学形式分布研究. 海洋科学, 27: 49-54
[12]  俞光耀, 吴增茂, 张志南, 等. 1999. 胶州湾北部水层生态动力学模型与模拟. 青岛海洋大学学报, 29: 421-429
[13]  于立霞, 简慧敏, 王兆锟. 2011. 夏季辽河口各形态营养盐的河口混合行为. 海洋科学, 35: 68-75
[14]  于庆云. 2012. 切萨比克湾(Chesapeake Bay)浮游植物动力学特征的数值模拟研究. 博士学位论文. 青岛: 中国海洋大学. 75-77
[15]  Blake R E, Duffy J E. 2010. Grazer diversity affects resistance to multiple stressors in an experimental seagrass ecosystem. Oikos, 119: 1625-1635
[16]  Bricker S B, Ferreira J G, Simas T. 2003. An integrated methodology for assessment of estuarine trophic status. Ecol Model, 169: 39-59
[17]  Brzezinski M A, Dickson M L, Nelson D M, et al. 2003. Ratios of Si, C and N Uptake by Microplankton in the Southern Ocean. Deep-Sea Res Part II-Top Stud Oceanogr, 50: 619-633
[18]  Cerco C, Noel M. 2004. Process-based primary production modeling in Chesapeake Bay. Mar Ecol-Prog Ser, 282: 45-59
[19]  Chapra S C. 1997. Surface Water-Quality Modeling. New York: McGraw-Hill. 192-209
[20]  Clark J S. 2005. Why environmental scientists are becoming Bayesians. Ecol Lett, 8: 2-15
[21]  Cloern J E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol-Prog Ser, 210: 223-253
[22]  Cloern J E, Grenz C, Vidergar-Lucas L. 1995. An empirical model of phytoplankton chlorophyll: Carbon ratio. The conversion factor between productivity and growth rate. Limnol Oceanogr, 40: 1313-1324
[23]  Cranford P J, Strain P M, Dowd M, et al. 2007. Influence of mussel aquaculture on nitrogen dynamics in a nutrient enriched coastal embayment. Mar Ecol-Prog Ser, 347: 61-79
[24]  Dennis B. 1996. Discussion: Should ecologists become Bayesians. Ecol Appl, 6: 1095-1104
[25]  Williams P J. 1995. Evidence for the seasonal accumulation of carbon-rich dissolved organic material its scale, in comparison with changes in particulate material and the consequential effect on net C/N ratios. Mar Chem, 51: 17-30
[26]  金元欢, 孙志林. 1992. 中国河口盐淡水混合特征研究. 地理学报, 47: 165-174
[27]  国家海洋局. 2007. 海洋监测规范. 中国人民共和国国家标准GB 17378. 北京: 中国标准出版社. 9-122
[28]  国家环境保护总局. 2002. 地表水和污水监测技术规范HJ/T 91-2002. 北京: 中国标准出版社. 2-31
[29]  中国海湾志编纂委员会. 1991. 中国海湾志. 北京: 海洋出版社. 140
[30]  朱明远. 1993. 黄海海区的叶绿素a和初级生产力. 黄渤海海洋, 11: 38-52
[31]  Arhonditsis G B, Qian S S, Stow C A, et al. 2007. Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake. Ecol Model, 28: 215-230
[32]  Arne K, Wolfgang K, Paul K, et al. 2001. C:N ratios in the mixed layer during the productive season in the northeast Atlantic Ocean. Deep-Sea Res Part I-Oceanogr Res Pap, 48: 661-688
[33]  Dettmann E H. 2001. Effect of water residence time on annual export and denitrification of nitrogen in estuaries: A model analysis. Estuaries, 24: 481-491
[34]  Edwards A M, Yool A. 2000. The role of higher predation in plankton population models. J Plankton Res, 22: 1085-1112
[35]  Ellison A M. 2004. Bayesian inference in ecology. Ecol Lett, 7: 509-521
[36]  EMECS. 2008. Environmental Conservation of the Seto Inland Sea. Nishinomiya: Asahi Print Co., Ltd. 102-103
[37]  Evans M A, Scavia D. 2013. Exploring estuarine eutrophication sensitivity to nutrient loading. Limnol Oceanogr, 58: 569-579
[38]  Fairbridge R W. 1980. The estuary: Its definition and geochemical cycle. In: Olausson E, Cato I, eds. Chemistry and Geochemistry of Estuaries. New York: John Wiley. 1-35
[39]  Fennel K, Boss E. 2003. Subsurface maxima of phytoplankton and chlorophyll: Steady state solutions from a simple model. Limnol Oceanogr, 48: 1521-1535
[40]  Geider R J. 1987. Light and temperature dependence of the carbon to chlorophyll ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. New Phytol, 106: 1-34
[41]  Gelman A, Hill J. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press. 13-26
[42]  Glibert P. 2006. Global ecology and oceanography of harmful algal blooms, harmful algal blooms in eutrophic systems. Technical Report. IOC and SCOR, Paris and Baltimore
[43]  Gonenc I E, Wolfin J P. 2005. Coastal lagoons: Ecosystem processes and modeling for sustainable use and development. London: CRC Press. 371-440
[44]  K?hler P, Koeve W. 2001. Marine dissolved organic matter: Can its C:N ratio explain carbon overconsumption? Deep-Sea Res Part I-Oceanogr Res Pap, 48: 49-62
[45]  Lunn D J, Thomas A, Best N, et al. 2000. WinBUGS-a Bayesian modelling framework: Concepts, structure, and extensibility. Stat and Comp, 10: 325-338
[46]  Malve O, Qian S S. 2006. Estimating nutrients and chlorophyll a relationships in Finnish lakes. Environ Sci Technol, 40: 7848-7854
[47]  Mei Z P, Legendre L, Tremblay J E, et al. 2005. Carbon to nitrogen (C:N) stoichiometry of the spring-summer phytoplankton bloom in the North Water Polynya (NOW). Deep-Sea Res Part I-Oceanogr Res Pap, 52: 2301-2315
[48]  Monbet Y. 1992. Control of phytoplankton biomass in estuaries: A comparative analysis of microtidal and macrotidal estuaries. Estuar Coast, 15: 563-571
[49]  Painting S J, Devlin M J. 2007. Assessing the impact of nutrient enrichment in estuaries: Susceptibility to eutrophication. Mar Pollut Bull, 55: 74-91
[50]  Pritchard D W. 1967. What is an estuary: A physical viewpoint. Am Assoc Adv Sci, 83: 3-6
[51]  Qian S S, Stow C A, Borsuk M E. 2003. On Monte Carlo methods for Bayesian inference. Ecol Model, 159: 269-278
[52]  Riemann B, Simonsen P, Stensgaard L. 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. J Plankton Res, 11: 1037-1046
[53]  Sambrotto R. N, Savidge G, Robinson C, et al. 1993. Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature, 353: 248-251
[54]  Scavia D, Liu Y. 2009. Exploring estuarine nutrient susceptibility. Environ Sci Technol, 43: 3474-3480
[55]  Steward J S, Lowe E F. 2010. General empirical models for estimating nutrient load limits for Florida''s estuaries and inland waters. Limnol Oceanogr, 55: 433-445
[56]  Swaney D P, Scavia D, Howarth R.W, et al. 2008. Estuarine classification and response to nitrogen loading: Insights from simple ecological models. Estuar Coast Shelf Sci, 77: 253-264
[57]  Thomas H, Ittekkot V, Osterroht C, et al. 1999. Preferential recycling of nutrient-the ocean''s way to increase new production and to pass nutrient limitation. Limnol Oceanogr, 44: 1999-2004
[58]  Toggweiler J R. 1993. Carbon overconsumption. Nature, 363: 210-212
[59]  Wiley M J, Hyndman D W, Pijanowski B C, et al. 2010. A multi-modeling approach to evaluating climate and land use change impacts in a Great Lakes river basin. Hydrobiol, 657: 243-262

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133