全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
测绘学报  2015 

引入结点度的线/面拓扑关系细分方法与应用

DOI: 10.11947/j.AGCS.2015.20140138, PP. 445-452

Keywords: GIS,拓扑关系,线/面单元交线,结点度,细分类型

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对线/面细分拓扑关系研究存在的不足,提出了一种基于结点度的线/面细分拓扑关系描述与计算方法.该方法在定义线/面单元交线并分析其特点的基础上,引入结点度来区分线/面单元交线细分类型.根据单元交线端点在线/面目标组成图形结构中结点度的不同,及线目标在度为3和4的交线端点处是否有相连线段、相连线段位于多边形的边界上、内部或外部4个谓词推导出了21种有意义的线/面交线细分拓扑关系类型.在此基础上分析比较了本文方法与现有方法的异同与优势,举例说明本文方法在复杂线/面细分拓扑关系描述中的应用.最后用VisualC#语言编程实现了该方法,并将其应用到线状道路/面状河流目标间的数据质量检查与修正中,验证可行性.

References

[1]  EGENHOFER M J, FRANZOSA R D. Point-set Topological Spatial Relations[J]. International Journal of Geographical Information System, 1991, 5(2): 161-174.
[2]  EGENHOFER M J, SHARMA J, MARK D M. A Critical Comparison of the 4-intersection and 9-intersection Models for Spatial Relations: Formal Analysis[C]//Auto Carto11: Proceedings of the Eleventh International Symposium on Computer-assisted Cartography Autocarto Conference. [S. l.]: American Society for Photogrammetry and Remote Sensing, 1993: 1.
[3]  CLEMENTINI E, FELICE P D. A Comparison of Methods for Representing Topological Relationships[J]. Information Sciences: Applications, 1995, 3(3): 149-178.
[4]  CLEMENTINI E, DI FELICE P D. Topological Invariants for Lines[J]. IEEE Transactions on Knowledge and Data Engineering, 1998, 10(1): 38-54.
[5]  CHEN Jun, ZHAO Renliang, QIAO Chaofei. Voronoi Diagram_Based GIS Spatial Analysis[J].Geomatics and Information Science of Wuhan University, 2003,28(sup1):32-37. (陈军,赵仁亮,乔朝飞. 基于Voronoi图的GIS空间分析研究[J].武汉大学学报: 信息科学版, 2003,28(sup1):32-37.)
[6]  CHEN J, LI C M, LI Z L, et al. A Voronoi-based 9-in-tersection Model for Spatial Relations[J]. International Journal of Geographical Information Science, 2001, 15(3): 201-220.
[7]  LIZL,ZHAO RL,CHEN J. A Voronoi-based Spatial Algebra for Spatial Relations[J]. Progress in Natural Science, 2002, 12(7): 528-536.
[8]  ZHOU X G, CHEN J,ZHAN F, et al. A Euler-number-based Topological Computation Model for Land Parcel Database Updating[J]. International Journal of Geographical Information Science, 2013, 27(10): 1983-2005.
[9]  ZHOU Xiaoguang, CHEN Jun. Computation of Topological Relations between Cadastral Objects Based on Euler-number[J]. Acta Geodaetica et Cartographica Sinica, 2006, 8(3): 291-298. (周晓光,陈军. 基于欧拉数的地籍拓扑关系计算[J]. 测绘学报, 2006, 35(3): 291-298.)
[10]  ZHOU Xiaoguang. Incremental Updating of Cadastral Database[M]. Beijing: Surveying and Mapping Press, 2007. (周晓光. 地籍数据库增量更新[M]. 北京: 测绘出版社, 2007.)
[11]  ZHOU Xiaoguang, YUE Guosen, WEI Jinzhan. A Computation Method of Parcels' Topological Relations Based on Oracle Spatial[J]. Journal of Central South University: Science and Technology, 2005, 36(2): 317-322. (周晓光, 岳国森, 魏金占. 基于Oracle Spatial的地籍地块空间拓扑关系判断[J]. 中南大学学报: 自然科学版, 2005, 36(2): 317-322.)
[12]  ZHOU Xiaoguang, CHEN Jun, JIANG Jie. Topological Relations between Parcels[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(4): 356-361. (周晓光, 陈军, 蒋捷. 地籍地块间的空间拓扑关系[J]. 测绘学报, 2003, 32(4): 356-361.)
[13]  RANDELL D A, CUI Z, COHN A G. A Spatiallogic-based on Regions and Connection[C]//Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning. San Francisco: Morgan Kaufmann,1992: 165-176.
[14]  CUI Z, COHN A G, RANDELL D A. Qualitative and Topological Relationships in Spatial Databases[C]//Proceedings of the Third International Symposium on Advances in Spatial Data Bases. Singapore: Springer-Verlag, 1993: 293-315.
[15]  COHN A G. Exploiting Temporal Continuity in Qualitative Spatial Calculi.[C]//Spatial and Temporal Reasoning in Geographic Information Systems. New York: Oxford University Press, 1998:5-24.
[16]  EGENHOFER M J, FRANZOSA R. On the Equivalence of Topological Relations[J]. International Journal of Geographical Information Systems, 1995,9:133-152.
[17]  DENG M, CHENG T, CHEN X, et al. Multi-level Topological Relations between Spatial Regions Based upon Topological Invariants[J]. Geoinformatica, 2007, 11: 239-267.
[18]  GUO Qingsheng, DU Xiaochu, LIU Hao. Research on Quantitative Representation and Abstraction of Topological Relation between Two Regions[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(2): 123-128. (郭庆胜, 杜晓初, 刘浩. 空间拓扑关系定量描述与抽象方法研究[J]. 测绘学报, 2005, 34(2): 123-128.)
[19]  GUO Qingsheng, CHEN Yujian, LIU Hao. Combinational Reasoning of Spatial Topological Relations between a Line and an Area[J]. Geomatics and Information Science of Wuhan University, 2005, 30(6): 529-532. (郭庆胜, 陈宇箭, 刘浩. 线与面的空间拓扑关系组合推理[J]. 武汉大学学报: 信息科学版, 2005, 30(6): 529-532.)
[20]  DU S, WANG Q, GUO L. Modelling the Scale Dependences of Topological Relations between Lines and Regions Induced by Reduction of Attributes[J]. International Journal of Geographical Information Systems, 2010, 24: 1649-1686.
[21]  DU Xiaochu, HUANG Maojun. Description and Discrimination of Topological Relations between Uncertain Linear and Area Object[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(3): 340-350. (杜晓初, 黄茂军. 不确定线-面拓扑关系的描述与判别[J]. 测绘学报, 2007, 36(3): 340-350.)
[22]  DENG Min, MA Hangying. The Hierarchical Representation of Topological Relations between a Line and an Area[J].Acta Geodaetica et Cartographica Sinica, 2008, 37(4): 507-513. (邓敏, 马杭英. 线与面目标间拓扑关系的层次表达方法[J]. 测绘学报, 2008, 37(4): 507-513.)
[23]  WU Changbin, Lü Guonian. Detail Representation and Calculation Method of Topological and Metric Relationships between Line and Region[J]. Journal of Computer-aided Design & Computer Graphics, 2009, 21(11): 1551-1556. (吴长彬, 闾国年. 线面拓扑和度量关系的细分描述和计算方法[J]. 计算机辅助设计与图形学学报, 2009, 21(11): 1551-1556.)
[24]  HU Jiaji. Operations Research[M]. Changsha: Central South University Press, 1987. (胡家骥. 运筹学[M]. 长沙: 中南工业出版社, 1987.)
[25]  WANG Yongxian. Operations Research: Programming Theory and Network[M]. Beijing: Tsinghua University Press, 1993. (王永县. 运筹学: 规划论及网络[M]. 北京: 清华大学出版社, 1993.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133