全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进的l0范数LMS算法与分析

DOI: 10.13190/j.jbupt.2015.04.017, PP. 81-85

Keywords: 变步长,基于l0范数的最小均方,收敛速度,抗噪声性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种改进的基于l0范数的最小均方(LMS)算法.采用误差的相关函数值调整权系数步长因子以及零吸引项,增强系统的抗噪声性能;并且引入一种修正的权系数步长因子更新方法,进而使系统具有较快的跟踪速度.对提出的算法进行理论分析,最后在不同信噪比下进行仿真验证并与已有的基于l0范数的LMS算法进行比较.理论分析结合仿真验证都表明新提出算法具有较快的跟踪速度和强的抗噪声性能.

References

[1]  Wu Feiyun, Tong Feng. Non-uniform norm constraint LMS algorithm for sparse system identification [J]. IEEE Communications Letters, 2013, 17(2): 385-388.
[2]  Kalouptsidis N, Mileounis G, Babadi B, et al. Adaptive algorithms for sparse system identification [J]. Signal Processing, 2011, 91(8): 1910-1919.
[3]  Zhao Shengkui, Zhihong Man, Suiyang Khoo, et al. Variable step-size LMS algorithm with a quotient form [J]. Signal processing, 2009, 89(1): 67-76.
[4]  田福庆, 罗荣, 李克玉, 等. 基于改进的双曲正切函数变步长LMS算法[J]. 系统工程与电子技术, 2012, 34(9): 1758-1706. Tian Fuqing, Luo Rong, Li Keyu, et al. New variable step-size LMS algorithm based on modified hyperbolic tangent function [J]. Systems Engineering and Electronics, 2012, 34(9): 1758-1706.
[5]  Costa, Márcio Holsbach, José Carlos Moreira Bermudez. A noise resilient variable step-size LMS algorithm [J]. Signal Processing, 2008, 88(3): 733-748.
[6]  Gu Yuantao, Jin Jian, and Mei Shunliang. l0 norm constraint LMS algorithm for sparse system identification [J]. IEEE Signal Processing Letters, 2009, 16(9): 774-777.
[7]  Su Guolong, Jin Jian, Gu Yuantao, et al. Performance analysis of l0 norm constraint least mean square algorithm [J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2223-2235.
[8]  曲庆, 金坚, 谷源涛. 用于稀疏系统辨识的改进l0_LMS算法[J]. 电子与信息学报, 2011, 33(3): 604-609. Qu Qing, Jin Jian, Gu Yuantao. An improved l0_LMS algorithm for sparse system identification [J]. 2011, 33(3): 604-609.
[9]  Jin Jian, Qu Qing, Gu Yuantao. Robust zero-point attraction least mean square algorithm on near sparse system identification [J]. IET Signal Processing, 2013, 7(3): 210-218.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133