全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复合渗透率测井评价方法在砂砾岩稠油油藏的应用*——以克拉玛依油田某区八道湾组为例

DOI: 10.11867/j.issn.1001-8166.2015.07.0773, PP. 773-779

Keywords: 砂砾岩,渗透率模型,BP神经网络,判别分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

砂砾岩储层孔隙结构复杂、非均质性强,在渗透率计算方面传统的测井解释方法误差较大,目前还没有经典的计算砂砾岩渗透率的测井解释模型。以克拉玛依油田某区八道湾组砂砾岩稠油油藏为例,首先在微观层面上分析了渗透率的主控因素。其次根据本地区的实际情况建立了3套渗透率测井解释方法一是在前人研究基础上改进了多元回归模型;二是在岩性识别的基础上分不同岩性建立了渗透率模型;三是利用BP神经网络进行了渗透率的预测。最后对传统的经验公式与文中的3种方法进行检验。结果表明,比起传统的经验公式和多元回归模型,基于不同岩性的渗透率模型与BP神经网络在实际应用中效果更好,较大幅度地提高了测井解释精度,在非均质性强的砂砾岩油藏中具有更好的应用前景。

References

[1]  Zhang Daiyan,Peng Yongcan,Xiao Fangwei,et al.Pore structure and influence factors of conglomerate reservoir—Case study of lower Karamay Formation in mid and east of 7th block,Karamay Oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(6):29-34. [张代燕,彭永灿,肖芳伟,等.克拉玛依油田七中、东区克下组砾岩储层孔隙结构特征及影响因素[J].油气地质与采收率,2013,20(6):29-34.]
[2]  Lai Jin,Wang Guiwen,Wang Shu’nan,et al.Research status and advances in the diagenetic facies of clastic reservoirs[J].Advances in Earth Science,2013,28(1):39-50. [赖锦,王贵文,王书南,等.碎屑岩储层成岩相研究现状及进展[J].地球科学进展,2013,28(1):39-50.]
[3]  Zhang Jinliang,Zhang Penghui,Xie Jun,et al.Diagenesis of clastic reservoirs:Advances and prospects[J].Advances in Earth Science,2013,28(9):957-967. [张金亮,张鹏辉,谢俊,等.碎屑岩储集层成岩作用研究进展与展望[J].地球科学进展,2013,28(9):957-967.]
[4]  Zhu Xiaomin.Sedimentary Petrology[M].Beijing:Petroleum Industry Press,2008. [朱筱敏.沉积岩石学[M].北京:石油工业出版社,2008.]
[5]  Sun Jianmeng, Yan Guoliang.Review on absolute permeability model[J].Well Logging Technology, 2012,36(4):329-335. [孙建孟,闫国亮.渗透率模型研究进展[J].测井技术,2012,36(4): 329-335.]
[6]  Herron M M,Rd O Q.Estimating the intrinsic permeability of clastic sediments from geochemical data[C]∥SPWLA 28th Annual Symposium,1987.
[7]  Shen Benke,Zhao Hongbing,Cui Wenfu,et al.Sandy conglomerate reservoir logging evaluation study[J].Progress in Geophys,2012,27(3):1 051-1 058. [申本科,赵红兵,崔文富,等.砂砾岩储层测井评价研究[J].地球物理学进展,2012,27(3):1 051-1 058.]
[8]  Gao Boyu,Peng Shimi,Liu Hongqi.Fine log interpretation model for conglomerate reservoir in Menggulin area[J].Well Logging Technology,2005,29(1):55-58. [高博禹,彭仕宓,刘红歧.蒙古林砾岩油藏储层测井精细解释模型[J].测井技术,2005,29(1):55-58.]
[9]  Zhang Liyan. Porosity and permeability predictions in sand-conglomerate reservoir from conventional well logs[J].Well Logging Technology,2005,29(3):212-215.[张丽艳.砂砾岩储层孔隙度和渗透率预测方法[J].测井技术,2005,29(3):212-215.]
[10]  Luo Shuiliang,Lin Chengyan,Yuan Xueqiang, et al.Fine log interpretation model for glutenite reservoirs controlled by sedimentary microfacies and its application[J].Journal of Oil and Gas Technology,2008,30(5):85-98. [罗水亮,林承焰,袁学强,等.沉积微相约束下的砂砾岩储层测井精细解释模型及应用——以滨南油田滨三区为例[J].石油天然气学报,2008,30(5):85-98.]
[11]  Chen Ganghua,Zhang Xiaozhen,Wu Suying,et al.Logging evaluation of low-permeability glutenite reservoir[J].Geophysical Prospecting for Petroleum,2009,48(4):412-416. [陈钢花,张孝珍,吴素英,等.特低渗砂砾岩储层的测井评价[J].石油物探,2009,48(4):412-416.]
[12]  Liu Guangdi.Petroleum Geology[M].Beijing:Petroleum Industry Press,2009. [柳广弟.石油地质学[M].北京:石油工业出版社,2009.]
[13]  Wu Yuanyan,Wu Shenghe,Cai Zhengqi.Oilfield Subsurface Geology[M].Beijing:Petroleum Industry Press,2005. [吴元燕,吴胜和,蔡正旗.油矿地质学[M].北京:石油工业出版社,2005.]
[14]  Zhang Manlang,Li Xizhe,Xie Wuren.Pore types and pore texture of sandstone reservoir of 2 nd member of Shanxi Formation,Ordos Basin[J].Natural Gas Geoscience,2008,19(4):480-486. [张满郎,李熙喆,谢武仁.鄂尔多斯盆地山2段砂岩储层的孔隙类型与孔隙结构[J].天然气地球科学,2008,19(4):480-486.]
[15]  Yong Shihe,Zhang Chaomo.Logging Data Processing and Comprehensive Interpretation[M].Dongying:Petroleum University Publishing House,1996. [雍世和,张超谟.测井数据处理与综合解释[M].东营:石油大学出版社,1996.]
[16]  Yang Bin,Kuang Lichun,Sun Zhongchun,et al. Neural Network and Its Application in Oil Well Logging[M].Beijing:Petroleum Industry Press,2005. [杨斌,匡立春,孙中春,等.神经网络及其在石油测井中的应用[M].北京:石油工业出版社,2005.]
[17]  Zhou Jinying,Gui Biwen,Li Mao,et al.An application of the artificial neural net dominated by lithology to permeability prediction[J].Acta Petrolei Sinica,2010,31(6):985-988. [周金应,桂碧雯,李茂,等.基于岩控的人工神经网络在渗透率预测中的应用[J].石油学报,2010,31(6): 985-988.]
[18]  Xia Hongquan,Zhang Xianhui,Fan Xiangyu,et al.The study on predicting each point’s permeability based on neural network and log data[J].Journal of Southwest Petroleum Institute,2001,23(1):11-13. [夏宏泉,张贤辉,范翔宇,等.基于神经网络法的逐点渗透率测井解释研究[J].西南石油学院学报,2001,23(1):11-13.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133