全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳质气溶胶的放射性碳同位素(14C)源解析:原理、方法和研究进展

DOI: 10.1167/j.issn.1001-8166.2015.04.0425, PP. 425-432

Keywords: 气溶胶,有机碳,元素碳,源解析,放射性碳,(14C)

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳质气溶胶(或颗粒物)作为大气气溶胶的重要组成,对环境、气候和人类健康造成了巨大的危害。其主要组成成分有机碳和元素碳具有不同的来源特征,且对人类健康和气候系统的影响也具有明显的差异。放射性碳同位素(14C)不仅能定性区分生物源和化石源,还能定量分析不同来源对有机碳和元素碳的贡献比率。重点评述了放射性碳同位素法对气溶胶源解析的技术原理、分离测试方法以及在我国应用的研究进展;最后提出了国内研究应加强的领域和利用放射性碳同位素法研究大气气溶胶的发展趋势。

References

[1]  Duan Fengkui, He Kebin, Liu Xiande, et al. Review of carbonaceous aerosols studies: Organic carbon and elemental carbon[J]. Chinese Journal of Environmental Engineering, 2007, 1(8): 1-8. [段凤魁, 贺克斌, 刘咸德, 等. 含碳气溶胶研究进展: 有机碳和元素碳[J]. 环境工程学报, 2007, 1(8): 1-8.]
[2]  Cao J J, Lee S C, Chow J C, et al. Spatial and seasonal distributions of carbonaceous aerosols over China[J]. Journal of Geophysical Research—Atmospheres, 2007, 112(D22),doi:10.1029/2006JD008205.
[3]  Pöschl U. Atmospheric aerosols: Composition, transformation, climate and health effects[J]. Angewandte Chemie International Edition, 2005, 44(46): 7 520-7 540.
[4]  Chow J C, Watson J G. PM 2.5 carbonate concentrations at regionally representative interagency monitoring of protected visual environment sites[J]. Journal of Geophysical Research—Atmospheres, 2002, 107(D21),doi:10.1029/2001JD000574.
[5]  Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J].Nature, 2001, 409(6 821): 695-697.
[6]  Bond T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research—Atmospheres, 2013, 118: 5 380-5 552.
[7]  Nel A. Air pollution-related illness: Effects of particles[J]. Science, 2005, 308(5 723): 804-806.
[8]  Vineis P, Forastiere F, Hoek G, et al. Outdoor air pollution and lung cancer: Recent epidemiologic evidence[J]. International Journal of Cancer, 2004, 111(5): 647-652.
[9]  Huang R J, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7 521): 218-222.
[10]  Wang Yuesi, Zhang Junke, Wang Lili, et al. Researching significance, status and expectation of haze in Beijing-Tianjin-Hebei region[J]. Advances in Earth Science, 2014, 29(3): 388-396. [王跃思,张军科,王莉莉,等.京津冀区域大气霾污染研究意义、现状及展望[J]. 地球科学进展, 2014, 29(3): 388-396.]
[11]  He Hong, Wang Xinming, Wang Yuesi, et al. Formation mechanism and control strategies of haze in China[J]. Bulletin of Chinese Academy of Sciences, 2013, 28: 344-352. [贺泓, 王新明, 王跃思, 等. 大气灰霾追因与控制[J]. 中国科学院院刊, 2013, 28: 344-352.]
[12]  Currie L A. Evolution and multidisciplinary frontiers of 14 C aerosol science[J]. Radiocarbon, 2000, 42(1): 115-126.
[13]  Zhang Shichun, Wang Yiyong, Tong Quansong. The use of carbon isotope analysis in source apportionment of carbonaceous aerosols: A review[J]. Advances in Earth Science, 2013,28(1):62-70. [张世春,王毅勇,童全松.碳同位素技术在碳质气溶胶源解析中应用的研究进展[J].地球科学进展,2013,28(1):62-70.]
[14]  Reddy C M, Xu L. Using radiocarbon to apportion sources of polycyclic aromatic hydrocarbons in household soot[J]. Environmental Forensics, 2003, 4:191-197.
[15]  Lewis C W, Klouda G A, Ellenson W D. Radiocarbon measurement of the biogenic contribution to summertime PM-2.5 ambient aerosol in Nashville, TN[J]. Atmospheric Environment, 2004, 38(35): 6 053-6 061.
[16]  Szidat S, Jenk T M, Gäggeler H W, et al. Radiocarbon ( 14 C)-deduced biogenic and anthropogenic contributions to Organic Carbon (OC) of urban aerosols from Zürich, Switzerland[J]. Atmospheric Environment, 2004, 38(24): 4 035-4 044.
[17]  Gustafsson O, Krusa M, Zencak Z, et al. Brown clouds over South Asia: Biomass or fossil fuel combustion?[J].Science, 2009, 323(5 913): 495-498.
[18]  Szidat S. Sources of Asian haze[J]. Science, 2009, 323(5 913): 470-471.
[19]  Szidat S, Jenk T M, Gäggeler H W, et al. Source apportionment of aerosols by 14 C measurements in different carbonaceous particle fractions[J]. Radiocarbon, 2004, 46(1): 475-484.
[20]  Szidat S, Jenk T M, Gäggeler H W, et al. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon ( 14 C) in the environment[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2004, 223/224: 829-836.
[21]  Mohn J, Szidat S, Fellner J, et al. Determination of biogenic and fossil CO 2 emitted by waste incineration based on 14 CO 2 and mass balances[J]. Bioresource Technology, 2008, 99(14): 6 471-6 479.
[22]  Cachier H, Bremond M P, Buat-Menard P. Determination of atmospheric soot carbon with a simple thermal method[J]. Tellus Series B—Chemical and Physical Meteorology, 1989, 41(3): 379-390.
[23]  Zhang Y L, Liu D, Shen C D, et al. Development of a preparation system for the radiocarbon analysis of organic carbon in carbonaceous aerosols in China[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2010, 268(17/18): 2 831-2 834.
[24]  Szidat S, Ruff M, Perron N, et al. Fossil and non-fossil sources of Organic Carbon (OC) and Elemental Carbon (EC) in Goeteborg[J]. Sweden Atmospheric Chemistry and Physics, 2009, 9: 1 521-1 535.
[25]  Zhang Y L, Perron N, Ciobanu V G, et al. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 2012, 12: 10 841-10 856.
[26]  Zhang Y L, Zotter P, Perron N, et al. Fossil and non-fossil sources of different carbonaceous fractions in fine and coarse particles by radiocarbon measurement[J]. Radiocarbon, 2013, 55(2/3): 1 510-1 520.
[27]  Zhang Y L, Li J, Zhang G, et al. Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on hainan Island, South China[J]. Environmental Science and Technology, 2014, 48(5): 2 651-2 659.
[28]  Novakov T, Hegg D A, Hobbs P V. Airborne measurements of carbonaceous aerosols on the east coast of the United States[J]. Journal of Geophysical Research—Atmospheres, 1997, 102(30):23-30.
[29]  Cavalli F, Viana M, Yttri K E, et al. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol[J]. Atmospheric Measurement Techniques, 2010, 3(1): 79-89.
[30]  Birch M E, Cary R A. Elemental carbon—based method for monitoring occupational exposures to particulate diesel exhaust[J]. Aerosol Science and Technology, 1996, 25(3): 21-241.
[31]  Chow J C, Watson J G, Chen L W A, et al. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols[J]. Environmental Science and Technology, 2004, 38(16): 4 414-4 422.
[32]  Watson J G, Chow J C. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons[J]. Aerosol and Air Quality Research, 2005, 5(1): 65-102.
[33]  Yang H, Yu J Z. Uncertainties in charring correction in the analysis of elemental and organic carbon in atmospheric particles by thermal/optical methods[J]. Environmental Science and Technology, 2002, 36(23): 5 199-5 204.
[34]  Zhang Y L, Perron N, Ciobanu V G, et al. On the isolation of OC and EC and the optimal strategy of radiocarbon—based source apportionment of carbonaceous aerosols[J]. Atmospheric Chemistry and Physics Discussions, 2012, 12: 17 657-17 702.
[35]  Yu J Z, Xu J, Yang H. Charring characteristics of atmospheric organic particulate matter in thermal analysis[J]. Environmental Science and Technology, 2002, 36(4): 754-761.
[36]  Shao Min, Li Jinlong, Tang Xiaoyan. Source apportionment of atmospheric carbonaceous aerosols using AMS[J]. Journal of Nuclear and Radiochemistry, 1996, 18(4): 234-238. [邵敏, 李金龙, 唐孝炎. 大气气溶胶含碳组分的来源研究——加速器质谱法[J]. 核化学与放射化学, 1996, 18(4): 234-238.]
[37]  Yang F, He K, Ye B, et al. One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai[J]. Atmospheric Chemistry and Physics, 2005, 5: 1 449-1 457.
[38]  Liu D, Li J, Zhang Y, et al. The use of levoglucosan and radiocarbon for source apportionment of PM 2.5 carbonaceous aerosols at a background site in East China[J]. Environmental Science and Technology, 2013, 47(18): 10 454-10 461.
[39]  Liu J, Li J, Zhang Y, et al. Source apportionment using radiocarbon and organic tracers for PM 2.5 carbonaceous aerosols in Guangzhou, South China: Contrasting local-and regional-scale haze events[J]. Environmental Science and Technology, 2014, 48(20):12 002-12 011.
[40]  Song J, He L, Peng P A, et al. Chemical and isotopic compostion of Humic-Like Substances (HULIS) in ambient aerosols in Guangzhou, South China[J]. Aerosol Science and Technology, 2012, 46(5): 533-546.
[41]  Zhang Y, Liu J, Salazar G A, et al. Micro-scale (μg) radiocarbon analysis of water-soluble organic carbon in aerosol samples[J]. Atmospheric Environment, 2014, 97: 1-5.
[42]  Szidat S, Bench G, Bernardoni V, et al. Intercomparison of 14 C analysis of carbonaceous aerosols: Exercise 2009[J]. Radiocarbon, 2013, 55(3/4): 1 496-1 509.
[43]  Reddy C M, Pearson A, Xu L, et al. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples[J]. Environmental Science and Technology, 2002, 36(8): 1 774-1 782.
[44]  Mollenhauer G, Rethemeyer J. Compound-specific radiocarbon analysis-Analytical challenges and applications[C]∥IOP Conference Series: Earth and Environmental Science Program 5, 2009.
[45]  Mandalakis M, Gustafsson O, Alsberg T, et al. Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites[J]. Environmental Science and Technology, 2005, 39(9):2 976-2 982.
[46]  Fahrni S M, Ruff M, Wacker L, et al. A preparative 2D-chromatography method for compound-specific radiocarbon analysis of dicarboxylic acids in aerosols[J]. Radiocarbon, 2010, 52(2): 752-760.
[47]  Wacker L, Fahrni S M, Hajdas I, et al. A versatile gas interface for routine radiocarbon analysis with a gas ion source[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2013, 294: 315-319.
[48]  Wacker L, Bonani G, Friedrich M, et al. Micadas: Routine and high-precision radiocarbon dating[J]. Radiocarbon, 2010, 52(2): 252-262.
[49]  Uhl T, Luppold W, Rottenbach A, et al. Development of an automatic gas handling system for microscale AMS 14 C measurements[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2007, 259: 303-307.
[50]  Szidat S, Salazar G A, Vogel E, et al. 14 C analysis and sample preparation at the new bern Laboratory for the Analysis of Radiocarbon with AMS (LARA)[J]. Radiocarbon,2014, 56(2):561-566.
[51]  Synal H A, Dobeli M, Jacob S, et al. Radiocarbon AMS towards its low-energy limits[J]. Nuclear Instruments and Methods in Physics Research Section B—Beam Interactions with Materials and Atoms, 2004, 223: 339-345.
[52]  Sheesley R J, Kruså M, Krecl P, et al. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis[J]. Atmospheric Chemistry and Physics,2009, 9(10): 3 347-3 356.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133