Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6 865): 738-742.
[2]
Dahlen F A, Suppe J. Mechanics, growth, and erosion of mountain belts[J]. Geological Society of America Special Papers, 1988, 218: 161-178.
[3]
Burbank D W, Blythe A E, Putkonen J, et al. Decoupling of erosion and precipitation in the himalayas[J]. Nature, 2003, 426(6 967): 652-655.
[4]
Godard V, Bourlès D L, Spinabella F, et al. Dominance of tectonics over climate in himalayan denudation[J]. Geology, 2014, 42(3): 243-246.
[5]
Molnar P, England P. Late cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346(6 279): 29-34.
[6]
Raymo M E, Ruddiman W F. Tectonic forcing of late cenozoic climate[J]. Nature, 1992, 359(6 391): 117-122.
[7]
Ding Yongjian, Zhou Chenghu, Shao Ming’an,et al. Studies of Earth surface proceses: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.[丁永建,周成虎,邵明安,等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.]
[8]
Granger D E, Kirchner J W, Finkel R. Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment[J]. Journal of Geology, 1996, 104: 249.
[9]
Brown E T, Stallard R F, Larsen M C, et al. Denudation rates determined from the accumulation of in situ-produced 10 Be in the luquillo experimental forest, Puerto Rico[J]. Earth and Planetary Science Letters, 1995, 129(1/4): 193-202.
[10]
Granger D E, Lifton N A, Willenbring J K. A cosmic trip: 25 years of cosmogenic nuclides in geology[J]. Geological Society of America Bulletin, 2013,125(9/10): 1379-1402.
[11]
Wang Xingshan, Zhang Jie, Qin Zhong. Methods for measuring erosion rate of rock: An overview[J]. Advances in Earth Science, 2013, 28(4): 447-454.[王兴山,张捷,秦中. 岩石侵蚀速率测算方法研究综述及展望[J]. 地球科学进展, 2013, 28(4): 447-454.]
[12]
Bookhagen B, Strecker M R. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern central andes[J]. Earth and Planetary Science Letters, 2012, 327/328: 97-110.
[13]
Wobus C, Heimsath A, Whipple K, et al. Active out-of-sequence thrust faulting in the central nepalese himalaya[J]. Nature, 2005, 434(7 036): 1 008-1 011.
[14]
Yao T, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ 18 O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
[15]
Liu Yong, Zou Songbing. A study on the distributing climatic models in arid mountainous area-distributing temperature and precipitation models in high spatial resolution in the Qilian Mountains[J]. Journal of Lanzhou University(Natural Sciences), 2006, 42(1): 7-12.[刘勇, 邹松兵. 祁连山地区高分辨率气温降水量分布模型[J]. 兰州大学学报:自然科学版, 2006, 42(1): 7-12.]
[16]
Chen Shaoyong, Dong Anxiang, Han Tong. Differences in summer precipitation between the east and west of Qilian Mountains and its contributing factors[J]. Journal of Nanjing Institute of Meteorology,2007, 30(5): 715-719.[陈少勇, 董安祥, 韩通. 祁连山东、西部夏季降水量时空分布的差异及其成因研究[J]. 南京气象学院学报, 2007, 30(5): 715-719.]
[17]
Hetzel R. Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides[J]. Tectonophysics, 2013, 582: 1-24.
[18]
Palumbo L, Hetzel R, Tao M X, et al. Catchment-wide denudation rates at the margin of NE Tibet from in situ-produced cosmogenic 10 Be[J]. Terra Nova, 2011, 23(1): 42-48.
[19]
Fang X M, Liu D L, Song C H, et al. Oligocene slow and miocene-quaternary rapid deformation and uplift of the Yumu Shan and north Qilian Shan: Evidence from high-resolution magnetostratigraphy and tectonosedimentology[J]. Geological Society, London, Special Publications, 2012, 373:1-12.
[20]
Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
[21]
Fang X M, Zhao Z J, Li J J, et al. Magnetostratigraphy of the late cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift[J]. Science in China(Series D), 2005, 48(7): 1 040-1 051.
[22]
Zhang Huiping, Zhang Peizhen, Zheng Dewen, et al. Tectonic geomorphology of the Qilian Shan: Insight into the late Cenozoic landscape evolution and deformation in the north eastern Tibetan Plateau[J]. Quaternary Sciences, 2012, 32(5): 907-920.[张会平, 张培震, 郑德文, 等. 祁连山构造地貌特征:青藏高原东北缘晚新生代构造变形和地貌演化过程的启示[J]. 第四纪研究, 2012, 32(5): 907-920.]
[23]
Zhang P Z, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812.
[24]
Dunai T J. Cosmogenic Nuclides-principles, Concepts and Applications in the Earth Surface Sciences[M]. UK: Cambridge University Press, 2010: 187.
[25]
Lal D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104(2/4): 424-439.
[26]
Nishiizumi K, Lal D, Klein J, et al. Production of 10 Be and 26 Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates[J]. Nature, 1986, 319(6 049): 134-136.
[27]
Bierman P, Steig E J. Estimating rates of denudation using cosmogenic isotope abundances in sediment[J]. Earth Surface Processes and Landforms, 1996, 21: 125-139.
[28]
Greensfelder Liese. Subtleties of sand reveal how mountains crumble[J]. Science,2002, 295(5 553): 256-258.
[29]
Ouimet W B, Whipple K X, Granger D E. Beyond threshold hillslopes: Channel adjustment to base-level fall in tectonically active mountain ranges[J]. Geology, 2009, 37(7): 579-582.
[30]
Roering J J, Kirchner J W, Dietrich W E. Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales[J].Journal of Geophysical Research, 2001, 106(B8): 16 499-16 513.
[31]
Burbank D W, Anderson R S. Tectonic Geomorphology[M]. New Jersey: Black Publishing, 2000.
[32]
Hu Xiaofei, Pan Baotian, Kirby E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(23): 2 329-2 338.[胡小飞, 潘保田, Kirby E, 等. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报, 2010, 55(23): 2 329-2 338.]
[33]
Hetzel R, Niedermann S, Tao M X, et al. Low slip rates and long-term preservation of geomorphic features in central Asia[J]. Nature, 2002, 417(6 887): 428-432.
[34]
Hetzel R, Tao M X, Stokes S, et al. Late pleistocene/holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2004, 23(6), doi:10.1029/2004TC001653.
[35]
Zheng D W, Clark M K, Zhang P Z, et al. Erosion, fault initiation and topographic growth of the north Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 2010, 6(6): 937-941.