Li Qi, Liu Guizhen, Zhang Jian, et al. Status and suggestion of environmental monitoring for CO 2 geological storage [J]. Advances in Earth Science, 2013, 28(6): 718-727.[李琦, 刘桂臻, 张建, 等. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727.]
[2]
Matsumoto K, Mignone B K. Model simulations of carbon sequestration in the northwest Pacific by direct injection [J]. Journal of Oceanography, 2005, 61(4): 747-760.
[3]
Masuda Y, Yamanaka Y, Sasai Y. Optimization of the horizontal shape of CO 2 injected domain and the depths of release in moving-ship type CO 2 ocean sequestration [J]. Journal of Marine Science and Technology, 2013, 18(2): 220-228.
[4]
Masuda Y, Yamanaka Y, Sasai Y, et al. Site selection in CO 2 ocean sequestration: Dependence of CO 2 injection rate on eddy activity distribution [J]. International Journal of Greenhouse Gas Control, 2009, 3(1): 67-76.
[5]
Xue M, Droegemeier K K, Wong V, et al. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications [J]. Meteorology and Atmospheric Physics, 2001, 76(3/4): 143-165.
[6]
Lackner K S, Brennan S. Envisioning carbon capture and storage: Expanded possibilities due to air capture, leakage insurance, and C-14 monitoring [J]. Climatic Change, 2009, 96(3): 357-378.
[7]
Zhang Hongxiang, Li Xiaochun, Wei Ning. The major technology track and analysis about carbon dioxide capture and storage [J]. Advances in Earth Science, 2010, 25(3): 335-340.[张鸿翔, 李小春, 魏宁. 二氧化碳捕获与封存的主要技术环节与问题分析[J]. 地球科学进展, 2010, 25(3): 335-340.]
[8]
Hammer K M, Pedersen S A. Deep-water prawn Pandalus borealis displays a relatively high pH regulatory capacity in response to CO 2 -induced acidosis [J]. Marine Ecology, 2013, 492: 139-151.
[9]
House K Z, Schrag D P, Harvey C F, et al. Permanent carbon dioxide storage in deep-sea sediments [J]. Proceedings of the National Academy of Sciences, 2006, 103(33): 12 291-12 295.
[10]
Levine J S, Matter J M, Goldberg D, et al. Gravitational trapping of carbon dioxide in deep sea sediments: Permeability, buoyancy, and geomechanical analysis [J]. Geophysical Research Letters, 2007, 34(24): L24703, doi:10.1029/2007GL031560.
[11]
Koide H, Shindo Y, Tazaki Y, et al. Deep sub-seabed disposal of CO 2 —The most protective storage [J]. Energy Conversion and Management, 1997, 38: S253-S258.
[12]
Eccles J K, Pratson L. Global CO 2 storage potential of self-sealing marine sedimentary strata [J]. Geophysical Research Letters, 2012, 39(19): L19604, doi:10.1029/2012GL053758.
[13]
Slagle A L, Goldberg D S. Evaluation of ocean crustal sites 1256 and 504 for long-term CO 2 sequestration [J]. Geophysical Research Letters, 2011, 38(16):L16307, doi:10.1029/2011/GL048613.
[14]
Prasad P S R, Sarma D S, Charan S N. Mineral trapping and sequestration of carbon-dioxide in deccan basalts: SEM, FTIR and raman spectroscopic studies on secondary carbonates [J]. Journal of the Geological Society of India, 2012, 80(4): 546-552.
[15]
Gislason S R, Oelkers E H. Carbon storage in basalt [J]. Science, 2014, 344(6 182): 373-374.
[16]
Goldberg D S, Takahashi T, Slagle A L. Carbon dioxide sequestration in deep-sea basalt [J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9 920-9 925.
[17]
Li Zhiwei. The Analysis and Control of Long-term Stability of the CO 2 Geological Sequestration of Salt Water Layer [D]. Beijing: Beijing Jiaotong University, 2012. [李志伟. 咸水层CO 2 地质封存的长期稳定性分析及控制[D]. 北京:北京交通大学, 2012.]
[18]
Goldberg D S, Lackner K S, Han P, et al. Co-location of air capture, subseafloor CO 2 sequestration, and energy production on the Kerguelen plateau [J]. Environmental Science & Technology, 2013, 47(13): 7 521-7 529.
[19]
Schrag D P. Storage of carbon dioxide in offshore sediments [J]. Science, 2009, 325(5 948): 1 658-1 659.
[20]
Li Q, Wu Z, Li X. Prediction of CO 2 leakage during sequestration into marine sedimentary strata [J]. Energy Conversion and Management, 2009, 50(3): 503-509.
[21]
Goldberg D, Slagle A L. A global assessment of deep-sea basalt sites for carbon[J].Energy Procedia, 2009, 1(1): 3 675-3 682.
[22]
Marieni C, Henstock T J, Teagle D A H. Geological storage of CO 2 within the oceanic crust by gravitational trapping [J]. Geophysical Research Letters, 2013, 40(23): 6 219-6 224.
[23]
Shaffer G. Long-term effectiveness and consequences of carbon dioxide sequestration [J]. Nature Geoscience, 2010, 3(7): 464-467.
[24]
de Orte M R, Lombardi A T, Sarmiento A M, et al. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO 2 and acid comparison [J]. Marine Environmental Research, 2014, 96: 136-144.
[25]
de Orte M R, Sarmiento A M, Basallote M D, et al. Effects on the mobility of metals from acidification caused by possible CO 2 leakage from sub-seabed geological formations [J]. Science of the Total Environment, 2014, 470/471: 356-363.
[26]
de la Haye K L, Spicer J I, Widdicombe S, et al. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean [J]. Journal of Experimental Marine Biology and Ecology, 2012, 412: 134-140.
[27]
Kita J, Kikkawa T, Asai T, et al. Effects of elevated p CO 2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica [J]. Marine Pollution Bulletin, 2013, 73(2): 402-408.
[28]
Kamenos N A, Burdett H L, Aloisio E, et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification [J]. Global Change Biology, 2013, 19(12): 3 621-3 628.
[29]
Spicer J I, Widdicombe S. A cute extracellular acid-base disturbance in the burrowing sea urchin Brissopsis lyrifera during exposure to a simulated CO 2 release [J]. Science of the Total Environment, 2012, 427/428: 203-207.
[30]
Shitashima K, Maeda Y, Koike Y, et al. Natural analogue of the rise and dissolution of liquid CO 2 in the ocean [J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 95-104.
[31]
Shitashima K, Maeda Y, Ohsumi T. Development of detection and monitoring techniques of CO 2 leakage from seafloor in sub-seabed CO 2 storage [J]. Applied Geochemistry, 2013, 30: 114-124.
[32]
Caramanna G, Fietzek P, Maroto-Valer M. Monitoring techniques of a natural analogue for sub-seabed CO 2 leakages [J]. Energy Procedia, 2011, 4: 3 262-3 268.
[33]
Payán M C, Verbinnen B, Galan B, et al. Potential influence of CO 2 release from a carbon capture storage site on release of trace metals from marine sediment [J]. Environmental Pollution, 2012, 162: 29-39.
[34]
Jiang X, Akber Hassan W A, Gluyas J. Modelling and monitoring of geological carbon storage: A perspective on cross-validation [J]. Applied Energy, 2013, 112: 784-792.
[35]
Stocker T F, Qin D, Plattne G K, et al. Climate change 2013: The physical science basis[M]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
[36]
Arce G L A F, Carvalho J J A, Nascimento L F C. A time series sequestration and storage model of atmospheric carbon dioxide[J]. Ecological Modeling, 2014, 272: 59-67.
[37]
Voormeij D A, Simandl G J. Geological, ocean, and mineral CO 2 sequestration options: A technical review [J]. Geoscience Canada, 2004, 31(1): 11-22.
[38]
Metz B, Davidson O, De Coninck H C, et al. IPCC Special Report On Carbon Dioxide Capture And Storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2005.
[39]
Geibert W, Assmy P, Bakker D C E, et al. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre [J]. Global Biogeochemical Cycles, 2010, 24(3): GB3007.
[40]
Köhler P, Abrams J F, Völker C, et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO 2 , surface ocean pH and marine biology [J]. Environmental Research Letters, 2013, 8(1), doi:10.1088/1748-932618/1/014009.
[41]
Sun Shu. Geological problems of CO 2 underground storage and its significance on mitigating climate change [J]. China Basic Science, 2006, 8(3): 17-22. [孙枢. CO 2 地下封存的地质学问题及其对减缓气候变化的意义[J]. 中国基础科学, 2006, 8(3): 17-22.]
[42]
Li L, Zhao N, Wei W, et al. A review of research progress on CO 2 capture, storage, and utilization in Chinese Academy of Sciences [J]. Fuel, 2013, 108: 112-130.
[43]
Kovscek A R, Wang Y. Geologic storage of carbon dioxide and enhanced oil recovery. I. Uncertainty quantification employing a streamline based proxy for reservoir flow simulation [J]. Energy Conversion and Management, 2005, 46(11): 1 920-1 940.
[44]
Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies [J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
[45]
Hao Yanjun, Yang Dinghui. Research progress of carbon dioxide capture and geological sequestration problem and seismic monitoring research [J].Progress in Geophysics, 2012, 27(6): 2 369-2 383.[郝艳军, 杨顶辉. 二氧化碳地质封存问题和地震监测研究进展[J].地球物理学进展, 2013, 27(6): 2 369-2 383.]
[46]
Wang Jianxiu, Wu Yuanbin, Yu Haipeng. Review of the technology for sequestration of carbon dioxide [J]. Chinese Journal of Underground Space and Engineering, 2013, 1: 81-90.[王建秀, 吴远斌, 于海鹏. 二氧化碳封存技术研究进展[J]. 地下空间与工程学报, 2013, 1: 81-90.]
[47]
Ridgwell A, Rodengen T J, Kohfeld K E. Geographical variations in the effectiveness and side effects of deep ocean carbon sequestration [J]. Geophysical Research Letters, 2011, 38(17): L17610, doi:10.1029/2011GL048423.
[48]
Blondes M S, Schuenemeyer J H, Olea R A, et al. Aggregation of carbon dioxide sequestration storage assessment units [J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(8): 1 839-1 859.
[49]
Xue Liang, Yu Weidong, Ning Chunlin, et al. Advances in sea surface partial pressure of CO 2 time series studies [J]. Advances in Earth Science, 2013, 28(8): 859-865.[薛亮, 于卫东, 宁春林, 等. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.]
[50]
Matter J M, Broecker W S, Gislason S R, et al. The CarbFix Pilot Project—Storing carbon dioxide in basalt [J]. Energy Procedia, 2011, 4: 5 579-5 585.
[51]
Adams E E, Caldeira K. Ocean storage of CO 2 [J]. Elements, 2008, 4(5): 319-324.
[52]
Williamson P, Turley C. Ocean acidification in a geoengineering context [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1 974): 4 317-4 342.
[53]
Marchetti C. On geoengineering and the CO 2 problem [J]. Climate Change, 1977, 1: 59-68.
[54]
Socolofsky S A, Bhaumik T. Dissolution of direct ocean carbon sequestration plumes using an integral model approach [J]. Journal of Hydraulic Engineering, 2008, 134(11): 1 570-1 578.
[55]
Smyth R C, Meckel T A. Best management practices for subseabed geologic sequestration of carbon dioxide [C]//Oceans.IEEE, 2012: 1-6.
[56]
Qanbari F, Pooladi-Darvish M, Tabatabaie S H, et al. CO 2 disposal as hydrate in ocean sediments [J]. Journal of Natural Gas Science and Engineering, 2012, 8: 139-149.
[57]
Rehder G, Kirby S H, Durham W B, et al. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 285-292.
[58]
Tohidi B, Yang J, Salehabadi M, et al. CO 2 hydrates could provide secondary safety factor in subsurface sequestration of CO 2 [J]. Environmental Science & Technology, 2010, 44(4): 1 509-1 514.
[59]
Golomb D, Pennell S, Ryan D, et al. Ocean sequestration of carbon dioxide: Modeling the deep ocean release of a dense emulsion of liquid CO 2 -in-water stabilized by pulverized limestone particles [J]. Environmental Science & Technology, 2007, 41(13): 4 698-4 704.
[60]
Lee S, Liang L, Riestenberg D, et al. CO 2 hydrate composite for ocean carbon sequestration [J]. Environmental Science & Technology, 2003, 37(16): 3 701-3 708.