全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于中性集对北川羌族自治县新城人工建设用地的识别

DOI: 10.6046/gtzyyg.2015.01.17, PP. 106-112

Keywords: 人工建设用地,北川新城,中性集,均值漂移,高分辨率

Full-Text   Cite this paper   Add to My Lib

Abstract:

人工建设用地(包括建筑物、道路、广场等社会服务设施)的识别一直是用来监测地区发展速度的一个有效途径。针对目前在人工建设用地识别领域中对在建建筑物的忽视问题,利用中性集、均值漂移以及绿度因子等概念将在建建设用地信息进行增强,进而将其成功识别出来。实验证明,该方法对高分辨率遥感影像的人工建设用地识别是可行的。通过分析2009—2013年期间北川新城的建设工地面积及分布的变化情况可以看出,北川新城在2010—2013年期间完工面积占2009—2010年新建工程总面积的98.17%,在北川新城拓展区又新建0.6km2的工程,施工迅速,为受灾居民提供了良好的居住和生活保障。

References

[1]  四川省绵阳市北川羌族自治县.北川山东工业园区规划[M].北川:[s.n.],2008. Beichuan Qiang Autonomous County,Mianyang City,Sichuan Province.Beichuan County,Shandong Province.Industrial Park Planning[M].Beichuan:[s.n.],2008.
[2]  四川省绵阳市北川羌族自治县.北川羌族自治县新县城城市总体规划(2008—2020)[M].北川:[s.n.],2008. Beichuan Qiang autonomous County,Mianyang City,Sichuan Province.The Overall Planning of New Beichuan Qiang Minority Autonomous County(2008—2020)[M].Beichuan:[s.n.],2008.
[3]  Carreira P,Resendes S,Santos A C.Towards automatic conflict detection in home and building automation systems[J].Pervasive and Mobile Computing,2014,12:37-57.
[4]  Sumer E,Turker M.An adaptive fuzzy-genetic algorithm approach for building detection using high-resolution satellite images[J].Computers,Environment and Urban Systems,2013,39:48-62.
[5]  Tong X H,Lin X F,Feng T T,et al.Use of shadows for detection of earthquake-induced collapsed buildings in high-resolution satellite imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2013,79:53-67.
[6]  Xiao J,Gerke M,Vosselman G.Building extraction from oblique airborne imagery based on robust faade detection[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,68:56-68.
[7]  Kang C C,Wang W J,Kang C H.Image segmentation with complicated background by using seeded region growing[J].AEU - International Journal of Electronics and Communications,2012,66(9):767-771.
[8]  Lopez-Molina C,De Baets B,Bustince H,et al.Multiscale edge detection based on Gaussian smoothing and edge tracking[J].Knowledge-Based Systems,2013,44:101-111.
[9]  Shih F Y,Cheng S X.Automatic seeded region growing for color image segmentation[J].Image and Vision Computing,2005,23(10):877-886.
[10]  Zareizadeh Z,Hasanzadeh R P R,Baghersalimi G.A recursive color image edge detection method using Green's function approach[J].Optik - International Journal for Light and Electron Optics,2013,124(21):4847-4854.
[11]  Loosvelt L,Peters J,Skriver H,et al.Random forests as a tool for estimating uncertainty at pixel-level in SAR image classification[J].International Journal of Applied Earth Observation and Geoinformation,2012,19:173-184.
[12]  Mathanker S K,Weckler P R,Bowser T J,et al.AdaBoost classifiers for pecan defect classification[J].Computers and Electronics in Agriculture,2011,77(1):60-68.
[13]  Qian X M,Tang Y Y,Yan Z,et al.ISABoost:A weak classifier inner structure adjusting based AdaBoost algorithm—ISABoost based application in scene categorization[J].Neurocomputing,2013,103:104-113.
[14]  Waske B,van der Linden S,Oldenburg C,et al.ImageRF–A user-oriented implementation for remote sensing image analysis with random forests[J].Environmental Modelling & Software,2012,35:192-193.
[15]  Ansari A Q,Biswas R,Aggarwal S.Neutrosophic classifier:An extension of fuzzy classifer[J].Applied Soft Computing,2013,13(1):563-573.
[16]  Klaric M,Scott G,Chi-Ren S,et al.Automated object extraction through simplification of the differential morphological profile for high-resolution satellite imagery[C]//Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium.Seoul:IEEE,2005:1265-1268.
[17]  Sengur A,Guo Y H.Color texture image segmentation based on neutrosophic set and wavelet transformation[J].Computer Vision and Image Understanding,2011,115(8):1134-1144.
[18]  Wilkinson M H F,Soille P,Pesaresi M,et al.Concurrent computation of differential morphological profiles on giga-pixel images[M]//Soille P,Pesaresi M,Ouzounis G.Mathematical Morphology and Its Applications to Image and Signal Processing.Berlin Heidelberg:Springer,2011:331-342.
[19]  Yan G R,Duan Z D,Ou J P,et al.Structural damage detection using residual forces based on wavelet transform[J].Mechanical Systems and Signal Processing,2010,24(1):224-239.
[20]  Yger F,Rakotomamonjy A.Wavelet kernel learning[J].Pattern Recognition,2011,44(10–11):2614-2629.
[21]  于博,牛铮,王力,等.一种基于中性集和均值漂移的彩色遥感图像非监督建筑物提取方法[J].光谱学与光谱分析,2013,33(4):1071-1075. Yu B,Niu Z,Wang L,et al.An unsupervised method of extracting constructions from color remote sensed image based on mean shift and neutrosophic set[J].Spectroscopy and Spectral Analysis,2013,33(4):1071-1075.
[22]  Guo Y H,Cheng H D.New neutrosophic approach to image segmentation[J].Pattern Recognition,2009,42(5):587-595.
[23]  Rivieccio U.Neutrosophic logics:Prospects and problems[J].Fuzzy Sets and Systems,2008,159(14):1860-1868.
[24]  Allen J,Bhattacharya S.A short note on financial data set detection using neutrosophic probability[C]//Proceedings of the first international conference on Neutrosophy,neutrosophic logic,neutrosophic set,neutrosophic probability and statistics.Albuquerque,NM,USA:University of New Mexico,2002:75-80.
[25]  Li B C,Guo Z G Wen C.Multi-level Fuzzy enhancement and edge extraction of images[J].Fuzzy Systems and Mathematics,2000,14(4):77-83.
[26]  林辉,莫登奎,熊育久,等.高分辨率遥感图像均值调整法分割技术研究[J].中南林学院学报:自然科学版,2006,26(4):85-88,95. Li H,Mo D K,Xiong Y J,et al.The method of segmenting high-resolution remote sensing images based on mean-shift[J].Journal of Central South Forestry University,2006,26(4):85-88,95.
[27]  沈占锋,骆剑承,胡晓东,等.高分辨率遥感影像多尺度均值漂移分割算法研究[J].武汉大学学报:信息科学版,2010,35(3):313-317. Shen Z F,Luo J C,Hu X D,et al.A mean shift multi-scale segmentation for high-resolution remote sensing images[J].Geomatics and Information Science of Wuhan Univers,2010,35(3):313-317.
[28]  Sezgin M,Sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133