全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于环形张拉整体的索杆全张力穹顶结构形态分析

DOI: 10.6052/j.issn.1000-4750.2014.04.S024, PP. 66-71

Keywords: 半规则张拉整体,环形张拉整体,形态分析,自应力模态,索穹顶

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用平衡矩阵奇异值分解技术,通过变换经典半八面体张拉整体单元的几何构型,对半规则张拉整体单元进行了自平衡构型的找形分析,给出了几何变换后的设计公式,并通过单元自应力模态和机构位移模态验证了单元的几何稳定性。对此单元进行环向拼装,得到了环形张拉整体结构并给出结构整体可行预应力。提出了环形张拉整体中部引入葵花形索穹顶的构造方法,构建了全张力自平衡的新型索杆穹顶结构,并对其进行了静力分析,表明该结构具有较好的刚度。最后通过实物模型进一步验证了该结构体系的可行性。该研究对张拉整体在实际工程中的应用具有一定促进作用。

References

[1]  Motro R, Nooshin H. Forms and forces in tensegrity systems [C]. Proceedings of Third International Conference on Space Structures, Amsterdam, Elsevier, 1984: 180―185.
[2]  Motro R. Tensegrity: Structural systems for the future [M]. London: Kogan Page Scienee, 2003: 7―32.
[3]  Quirant J, Kazi-Aoual M N, Motro R. Designing tensegrity systems: the case of a double layer grid [J]. Engineering Structures, 2003, 25(9): 1121―1130.
[4]  Sultan C. Modeling, design, and control of tensegrity structures with applications [D]. Indiana: Purdue University, 1999.
[5]  Murakami H, Nishimura Y. Initial shape finding and modal analyses of cyclic right-cylindrical tensegrity modules [J]. Computers and Structures, 2001, 79(9): 891―917.
[6]  Motro R, Belkacem S, Vassart N. Form finding numerical methods for tensegrity systems [C]. Proceedings of IASS International Symposium on Spatial, Lattice and Tension Structures, Atlanta, ASCE, 1994: 704―713.
[7]  Wang B B, Li Y Y. From tensegrity grids to cable-strut grids [J]. International Journal of Space Structures, 2001, 16(4): 279―314.
[8]  Yuan X F, Peng Z L, Dong S L, Zhao B J. A new tensegrity module-“torus” [J]. Advances in Structural Engineering, 2008, 11(3): 243―251.
[9]  Kenner H. Geodesic math and how to use it [D]. California: University of California, 1976.
[10]  Xu X, Luo Y. Force finding of tensegrity system using simulated annealing algorithm [J]. Journal of Structural Engineering, 2010, 136(8): 1027―1031.
[11]  Pellegrino S. Mechanics of Kinematically Indeterminate Structures [D]. Cambridge: University of Cambridge, 1986.
[12]  Calladine C R, Pellegrino S. First-order infinitesimal mechanisms [J]. International Journal of Solids and Structures, 1991, 27(4): 505―515.
[13]  Geiger D H, Stenfaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics [C]. Proceedings of IASS International Symposium, Osaka, ASCE, 1986: 265―272.
[14]  袁行飞, 董石麟. 索穹顶结构的新形式及其初始预应力确定[J]. 工程力学, 2005, 22(2): 22―26. Yuan Xingfei, Dong Shilin. New forms and initial prestress calculation of cable domes [J]. Engineering Mechanics, 2005, 22(2): 22―26. (in Chinese)
[15]  董石麟, 罗尧治, 赵阳. 新型空间结构分析、设计与施工[M]. 北京: 人民交通出版社, 2006: 612―615.
[16]  Dong Shilin, Luo Yaozhi, Zhao Yang. Analysis, design and construction of new space structures [M]. Beijing: China Communications Press, 2006: 612―615. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133