全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于预处理方法的空化超空化流数值模拟

DOI: 10.6052/j.issn.1000-4750.2014.04.0332, PP. 250-256

Keywords: 预处理方法,全湿流,空化流,空化模型,轴对称外型

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了一套水动力空化流数值计算方法,采用基于预处理方法的空化两相流模型计算二维空化问题,并通过添加源项来计算轴对称外型空化问题,发展了类比于Roe格式的空化两相流通量计算迎风格式,湍流模型采用经过修正的两方程模型,时间推进采用双时间步LU-SGS隐式方法,计算了二维水翼及轴对称体外型的全湿流、空化及超空化流动。数值结果表明,该文建立的基于预处理方法的空化两相流数值算法是有效的,可以对二维及轴对称外型的全湿流态以及空化、超空化的演化等现象进行数值预测。

References

[1]  权晓波, 李岩, 魏海鹏. 大攻角下轴对称航行体空化流动特性试验研究[J]. 水动力学研究与进展A辑, 2008, 23(6): 662―667. Quan Xiaobo, Li Yan, Wei Haipeng. An experimental study on cavitation of underwater vehicle’s surface at large angles of attack [J]. Chinese Journal of Hydrodynamics, 2008, 23(6): 662―667. (in Chinese)
[2]  王柏秋, 王聪. 空化模型中的相变系数影响研究[J]. 工程力学, 2012, 29(8): 378―384. Wang Baiqiu, Wang Cong. Study of the influence of phase-change coefficients in the cavitation model [J]. Engineering Mechanics, 2012, 29(8): 378―384. (in Chinese)
[3]  刑彦江, 张嘉钟, 王聪. 航行体加速运动对空泡形态影响研究[J]. 工程力学, 2012, 29(9): 343―348. Xing Yanjiang, Zhang Jiazhong, Wang Cong. Study on effect of vehicle accelerating motion on cavity shape [J]. Engineering Mechanics, 2012, 29(9): 343―348. (in Chinese)
[4]  何春涛, 王聪. 回转体匀速垂直入水早期空泡数值模拟研究[J]. 工程力学, 2012, 29(4): 237―243. He Chuntao, Wang Cong. Numerical simulation of early air-cavity of cylinder cone with vertical water-entry [J]. 2012, 29(4): 237―243. (in Chinese)
[5]  张广, 于开平. 通气空泡重力效应三维数值仿真研究[J]. 工程力学, 2012, 29(8): 366―372. Zhang Guang, Yu Kaiping. Three dimensional numerical simulation on the gravity effect of ventilated cavity [J]. Engineering Mechanics, 2012, 29(8): 366―372. (in Chinese)
[6]  Sunho Park. Numerical analysis of two-dimensional turbulent super-cavitating flows around a cavitator geometry [C]. 20th AIAA Computational Fluid Dynamics Conference, Hawaii, 2011.
[7]  Kartikeya K. Mahalatkar, Jeff Litzler, Karman Ghia, et al. Cavitating multiphase flow over oscillating hydrofoils [C]. 44th AIAA Aerospace Sciences Meeting and Exhibit, Nevada, 2006.
[8]  Xie Futian, Song Wenping. Numerical study of high-resolution scheme based on preconditioning method [J]. Journal of Aircraft, 2009, 46(2): 520―525.
[9]  Amrita K. Lonkar, Francisco Palacios. Simulation of reacting flows in magnetic fields with preconditioning [C]. 44th AIAA Plasma dynamics and Laser Conference, San Diego, 2013.
[10]  Kunz R F, Boger D A, Stinebring D R, et al. A preconditioned navier-stokes method for two-phase flows with application to cavitation prediction [J]. Computer & Fluids, 2000, 29(8): 849―875.
[11]  Hyeongjum Kim, Daeho Min, Chongam Kim. Efficient and accurate computations of cryogenic cavitating flows around turbopump inducer [C]. 21st AIAA Computational Fluid Dynamics Conference, San Diego, 2013.
[12]  Farouk M. Owis, Ali H. Nayfeh. Numerical simulation of super-and partially-cavitating flows over an axisymmetric projectile [C]. 39th AIAA Aerospace Sciences Meeting and Exhibit, Blacksburg, 2001.
[13]  康宏琳. 高超声速湍流气动加热的数值模拟[D]. 北京: 北京航空航天大学, 2008: 36―44. Kang Honglin. Numerical simulation of aerodynamic heating in hypersonic turbulent flows [D]. Beijing: Beihang University, 2008: 36―44. (in Chinese)
[14]  谢飞. 低马赫数非定常流动数值模拟及应用[D]. 西安: 西北工业大学, 2009: 72―77. Xie Fei. Numerical simulation and applications of unsteady flow in low mach [D]. Xi’an: Northwestern Polytechnical University, 2009: 72―77. (in Chinese)
[15]  Antony Jameson. An assessment of dual-time stepping, time spectral and artificial compressibility based numerical algorithms for unsteady flow with applications to flapping wings [C]. 19th AIAA Computational Fluid Dynamics, San Antonio, 2009.
[16]  Jameson A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings [C]. 10th AIAA Computational Fluid Dynamics Conference, Honolulu, 1991.
[17]  陈瑛. 自然空泡流数值模拟方法研究[D]. 上海: 上海交通大学, 2009: 130―132. Cheng Ying. Study of the numerical method for natural cavitating flow [D]. Shanghai: Shanghai Jiaotong University, 2009: 130―132. (in Chinese)
[18]  Rouse H, Mcnown J S. Cavitation and pressure distribution, head forms at zero angle of yaw [M]. Ames: Studies in Engineering, State University of Iowa Enginering Bulletin 32, Ames, IA, 1948.
[19]  (上接第228页)
[20]  郝鹏, 王博, 李刚, 等. 基于缺陷敏感性分析的加筋圆柱壳结构设计[J]. 应用力学学报, 2013, 30(3): 344―349. Hao Peng, Wang Bo, Li Gang, et al. Structural design of stiffened shells based on imperfection sensitivity analysis [J]. Chinese Journal of Applied Mechanics, 2013, 30(3): 344―349. (in Chinese)
[21]  Teng J G, Song C Y. Numerical models for nonlinear analysis of elastic shells with eigenmode-affine imperfections [J]. International Journal of Solids and Structures, 2001, 38(18): 3263―3280.
[22]  Anonymous. General rules-supplementary rules for the strength and stability of shell structures [R]. Eurocode 3, 1999.
[23]  Obrecht H, Rosenthal B, Fuchs P, et al. Buckling, postbuckling and imperfection-sensitivity: Old questions and some new answers [J]. Computational Mechanics, 2006, 37(6): 498―506.
[24]  范文亮, 张春涛, 李正良, 等. 考虑交叉项的自适应响应面法[J]. 工程力学, 2013, 30(4): 68―72. Fan Wenliang, Zhang Chuntao, Li Zhengliang, et al. An adaptive response surface method with cross terms [J]. Engineering Mechanics, 2013, 30(4): 68―72. (in Chinese)
[25]  Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria [J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1―13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133