全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

修正的内部基扩充无网格法求解多裂纹应力强度因子

DOI: 10.6052/j.issn.1000-4750.2014.03.0188, PP. 18-24

Keywords: 断裂力学,多裂纹,内部基扩充无网格法,特征距离,应力强度因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

修正的内部基扩充无网格Galerkin法求解了多裂纹应力强度因子。采用特征距离对内部基扩充无网格法进行修正,应用变分原理推导了系统离散方程,给出相互作用能量积分计算混合型模式下的应力强度因子的公式。求解3个平面应力条件下的多裂纹问题,并与其他数值方法的计算结果进行比较。数值算例表明:修正的内部基扩充无网格Galerkin法可以方便、有效地求解多裂纹问题,在不增加附加节点和自由度的情况下便可以得到较高精度的计算结果。

References

[1]  马文涛. 基于单位分解的扩展无网格法及其在岩体断裂中的应用[D]. 西安: 西安理工大学, 2013. Ma Wentao. An extended meshfree method based on partition of unity and its application in jointed rockness [D]. Xi’an: Xi’an University of Technology, 2013. (in Chinese)
[2]  Fleming M, Chu Y A, Moran B. Enriched element-free Galerkin methods for crack tip fields [J]. International Journal for Numerical Methods in Engineering, 1997, 40: 1483―1504.
[3]  Rao B N, Rahman S. A coupled meshless-finite element method for fracture analysis of cracks [J]. International Journal of Pressure Vessels and Piping, 2001, 78(9): 647―657.
[4]  Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks [J]. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316―2443.
[5]  Rabczuk T, Zi G S. A meshfree method based on the local partition of unity for cohesive cracks [J]. Computational Mechanics, 2007, 39(6): 743―760.
[6]  Nguyen V P, Rabczuk T, Bordas S, et al. Meshless methods: A review and computer implementation aspects [J]. Mathematics and Computers in Simulation, 2008, 79: 763―813.
[7]  Gu Y T, Wang W, Zhang L C, et al. An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields [J]. Engineering Fracture Mechanics, 2011, 1: 175―190.
[8]  Liew K M, CHENG Yu min, S Kitipornchai. Analyzing the 2D fracture problems via the enriched boundary element-free method [J]. International Journal of Solids and Structures, 2007, 44(11): 4220―4233.
[9]  Barbieri E, Petrinic N, Meo M, et al. A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity [J]. International Journal for Numerical Methods in Engineering, 2012, 90(2): 177―195.
[10]  彭翀, 袁慧娜, 张丙印. 无网格自动加密方法及其在土体裂纹分析中的应用[J]. 工程力学, 2013, 30(6): 231―235. Peng Chong, Yuan Huina, Zhang Bingyin. Autoumatic node refinement for meshfree method and its application soil crack analysis [J]. Engineering Mechanics, 2013, 30(6): 231―235. (in Chinese)
[11]  Bowie O L. Rectangular tensile sheet with symmetric edge cracks [J]. Journal of Applied Mechanics, 1964, 31(2): 208―212.
[12]  Yan X Q. A boundary element analysis for stress intensity factors of multiple circular arc cracks in a plane elasticity plate [J]. Applied Mathematical Modelling, 2010, 34: 2722―2737.
[13]  Chen Y Z. General case of multiple crack problems in an infinite plate [J]. Engineering Fracture Mechanics, 1984, 20: 591―597.
[14]  买买提明·艾尼, 热合买提江·依明. 现代数值模拟方法与工程实际应用[J]. 工程力学, 2014, 31(4): 11―18. Geni Mamtimin, Imin Rahmatjian. Modern numerical simulation methods and its practical applications in engineering [J]. Engineering Mechanics, 2014, 31(4): 11―18. (in Chinese)
[15]  Daux C, Moes N, Dolbow J, et al. Arbitrary branched and intersecting cracks with the extended finite element method [J]. International Journal for Numerical Methods in Engineering, 2000, 48: 1741―1760.
[16]  Törg F U, Stefan E, Carsten K. Modelling of cohensive crack growth in concrete structures with the extended finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 4087―4100.
[17]  苏静波, 范晓晨, 邵国建. 几何非线性扩展有限元法及其断裂力学应用[J]. 工程力学, 2013, 30(4): 42―46. Su Jingbo, Fan Xiaochen, Shao Guojian. Extended finite element method with nonlinear geometry and its application in fracture mechanics [J]. Engineering Mechanics, 2013, 30(4): 42―46. (in Chinese)
[18]  Muravin B, Turkel E. Multiple crack weight for solution of Multiple interacting cracks by meshless numerical methods [J]. International Journal for Numerical Methods in Engineering, 2006, 67: 1146―1159.
[19]  Singh I V, Mishra B K, Pant Mohit. A modified intrinsic enriched element free Galerkin method for multiple cracks simulation [J]. Materials and Design, 2010, 31: 628―632.
[20]  Shi J P, Ma W T, Li N. Extended meshless method based on partition of unity for solving multiple crack problems [J]. Meccanica, 2013, 48: 2263―2270.
[21]  Dolbow J E, Gosz M. On the computation of mixed-mode stress intensity factors in functionally graded materials [J]. International Journal of Solids and Structures, 2002, 39: 2557―2574.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133