全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

钢筋混凝土柱稳定问题的图算法

DOI: 10.6052/j.issn.1000-4750.2014.03.0224

Keywords: 二阶效应,弹塑性,图算法,极限曲率,长细比

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于柱子曲率分布的二次抛物线假设,采用虚功原理来计算二阶偏心距,得到简化的平衡方程。对于截面抗力,考虑完整的钢筋和混凝土本构关系,采用由应变计算内力的逆解方法来计算。对于极限曲率,将精确方法与我国《混凝土结构设计规范》(GB50010-2010)中的简化方法比较和分析,提出考虑配筋率的更为合理的简化公式。通过对坐标系的设计和构思,将平衡方程所有可能的解绘制成图形,计算3个基本变量和在图形中做4条辅助线,便可进行配筋设计,为设计人员提供了一种简单高效的手算工具。

References

[1]  Khuntia M, Ghosh S K. Flexural stiffness of reinforced concrete columns and beams: Analytical approach [J]. ACI Structural Journal, 2004, 101(3): 351―363.
[2]  许晶, 贡金鑫. 无侧移钢筋混凝土柱荷载-变形特征及非线性二阶效应[J]. 建筑结构学报, 2012, 33(5):93―104. Xu Jing, Gong Jinxin. Load-deflection characteristic and calculation of second-order effect of non-sway reinforced concrete columns [J]. Journal of Building Structures, 2012, 33(5): 93―104. (in Chinese)
[3]  Xu Jing, Gong Jinxin. Nonlinear second-order effect of non-sway reinforced concrete columns [J]. ACI Structural Journal, 2013, 110(5): 755―765.
[4]  陈旭, 周东华, 章胜平, 等. 压弯截面的弹塑性弯矩-曲率相关关系的解析法[J]. 工程力学, 2014, 31(11):175–182. Chen Xu, Zhou Donghua, Zhang Shengping, et al. Analytical method to determine the elasto-plastic moment-curvature relationship of bending section [J]. Engineering Mechanics, 2014, 31(11): 175–182. (in Chinese)
[5]  朱伯龙, 董振祥. 钢筋混凝土非线性分析[M]. 上海: 同济大学出版社, 1985: 68―81. Zhu Bolong, Dong Zhenxiang. Nonlinear analysis of reinforced concrete [M]. Shanghai: Tongji University Press, 1985: 68―81. (in Chinese)
[6]  陈政清. 梁杆结构几何非线性有限元的数值实现方法 [J]. 工程力学, 2014, 31(6): 42―52. Chen Zhengqing. Numerical implementation of geometrically nonlinear finite element method for beam structures [J]. Engineering Mechanics, 2014, 31(6): 42―52. (in Chinese)
[7]  EN1992 Eurocode 2, Design of concrete structures [S]. Berlin: Beuth Verlag GmbH, 2004.
[8]  Helena Barros, Vitor D Silva, Carla Ferreira. Second order effects in slender concrete columns-reformulation of the Eurocode 2 method based on nominal curvature [J]. Engineering Structures, 2010, 32(12): 3989―3993.
[9]  ACI 318-08, Building code requirements for structural concrete (ACI 318-08) and commentary [S]. Farmington Hills: American Concrete Institute, 2008.
[10]  Macgregor J G. Design of slender concrete columns- revisited [J]. ACI Structural Journal, 1993,90(3): 302―309.
[11]  GB 50010-2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures [S]. Beijing: China Architecture Industry Press, 2010. (in Chinese)
[12]  陈家夔, 崔锦. 钢筋混凝土偏心受压中长柱的纵向弯曲[J]. 西南交通大学学报, 1980(3): 1―8. Chen Jiakui, Cui Jin. Secondary bending of eccentrically loaded medium slender reinforced concrete columns [J]. Journal of Southwest Jiaotong University, 1980(3): 1―8. (in Chinese)
[13]  周东华, 王琼芬, 樊江, 等. 一新的混凝土配筋计算方法: 无量纲图表法[J]. 工程力学, 2010, 27(1): 165―172. Zhou Donghua, Wang Qiongfen, Fan Jiang, et al. A new method for the calculation of reinforcement of concrete: general dimensionless designing diagram [J]. Engineering Mechanics, 2010, 27(1): 165―172. (in Chinese)
[14]  耿旭阳, 周东华, 陈旭, 等. 确定受压柱计算长度的通用图表[J]. 工程力学, 2014, 31(8): 154―160, 174. Geng Xuyang, Zhou Donghua, Chen Xu, et al. Universal charts for determining the effective length of compression columns [J]. Engineering Mechanics, 2014, 31(8): 154―160, 174. (in Chinese)
[15]  陈惠发, Atsuta T. 梁柱分析与设计(第一卷: 平面问题特性及设计)[M]. 周绥平, 译. 北京: 人民交通出版社, 1997: 153―252. Chen W F, Atsuta T. Theory of beam-columns (vol.1: in plane behavior and design) [M]. Translated by Zhou Suiping, New York: McGraw-Hill, 1976: 153―252. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133