全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

球面网壳最不利几何缺陷的凸集和概率模型

DOI: 10.6052/j.issn.1000-4750.2012.02.0089

Keywords: 球面网壳,最不利几何缺陷,凸集和概率模型,线性屈曲模态,极限承载力,ANSYS参数化设计语言二次开发

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文提出了一种使用凸集模型确定单层球面网壳最不利初始几何缺陷的有效方法。初始几何缺陷的模拟使用前N阶线性屈曲模态的线性组合,其大小为随机变量,在N维欧氏空间中的椭球集合上变化,结构的非线性屈曲极限承载力表示为这些随机变量的函数,该文方法可以替代计算昂贵的概率方法研究缺陷敏感性结构。通过蒙特卡罗方法验证了凸集模型所得结果的正确性,该文计算采用ANSYS参数化设计语言二次开发实现。

References

[1]  沈世钊,陈昕. 网壳结构稳定[M]. 北京: 科学出版社, 1999: 1―10Shen shizhao,Chen Xin. Stability of latticed shells [M]. Beijing: Science Press, 1999: 1―10(in Chinese)
[2]  Yuhshi Fukumato. Structural stability design: Steel and composite structures [M]. Oxford: Elsevier Science Ltd, 1997: 9―63.
[3]  Yu Fang,Zhang Qilin. Stability analysis of steel space structures with system parametric uncertainties [J]. Communication in Numerical Methods in Engineering, 2000, 16: 267―273.
[4]  虞芳. 考虑随机参数影响的空间结构稳定性分析[D]. 上海: 同济大学建筑工程系, 1997.Yu Fang. Stability analysis of steel space structures with system parametric uncertainties [D]. Shanghai: Department of Building Engineering, Tongji University, 1997. (in Chinese)
[5]  吴剑国. 网壳结构稳定性的可靠性研究[D]. 上海: 同济大学建筑工程系, 2001.Wu Jianguo. Reliability for stability of reticulated shells [D]. Shanghai: Department of Building Engineering, Tongji University, 2001.
[6]  卢家森. 考虑随机参数的钢结构体系稳定设计理论研究[D]. 上海: 同济大学建筑工程系, 2004.Lu Jiasen. Design method for stability of steel structure with random imperfections [D]. Shanghai: Department of Building Engineering, Tongji University, 2004. (in Chinese)
[7]  Yakov Ben-Hain,Isaac Elishakoff. Non-probabilitic models of uncertainty in the nonlinear buckling of shells with general imperfections: Theoretical estimates of the knockdown factor [J]. Journal of Applied Mechanics, 1989, 56: 403―410.
[8]  Achintya Haldar,Sankaran Mahadevan. Reliability assessment using stochastic finite analysis [M]. New York: John Wiley & Sons, Inc, 2000: 105―126.
[9]  Warran J E. Nonlinear stability an analysis of frame-type structures with random geometric imperfection using a total-lagranfian finite element formulation [D]. Blacksburg: the Virginia Polytechnic Institute and State University, 1997.
[10]  Yakov Ben-Hain,Isaac Elishakoff. Convex models of uncertainty in applied mechanics [M]. Amsterdam: Elsevier Science Publishers B.V, 1990: 135―193.
[11]  谭建国. 使用ANSYS进行有限元分析[M]. 北京: 北京大学出版社, 2002: 402―469Tan Jianguo. Using ANSYS to perform finite element analysis [M]. Beijing: Peking University Press, 2002: 402―469(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133