全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2015 

不同气孔密度水稻的光合特征及Rubisco酶活性研究

DOI: 10.11869/j.issn.100-8551.2015.06.1142, PP. 1142-1148

Keywords: 水稻,气孔密度,光响应,CO2响应,Rubisco酶活性

Full-Text   Cite this paper   Add to My Lib

Abstract:

以籼粳杂交后代(F13)中具有高、中、低气孔密度叶片的品系为试材,研究了不同品系对光强和CO2浓度处理下的光合特征以及Rubisco酶活性,以期揭示气孔性状对光强和CO2浓度响应机制以及与Rubisco酶活性的相关性。结果表明:在光响应中,高气孔密度水稻的最大光合速率为24.6μmol·m-2·s-1,比中、低气孔密度水稻分别高4.3%和19.6%。在CO2响应中,高气孔密度水稻的最大光合速率为30.8μmol·m-2·s-1,比中、低气孔密度水稻分别高4.6%和9.5%。此外,不同气孔密度水稻的Rubisco酶活性与气孔密度变化相一致,呈极显著正相关(r=0.912,P<0.01)。因此叶片气孔密度的增加有利于提高光能和CO2利用效率。本研究结果为进一步从籼粳交后代中选育高光效材料提供理论依据。

References

[1]  [l] 周云龙.植物生物学[M]. 第二版.北京:高等教育出版社,2004:68
[2]  Hamid K, Philippe M, Shao H B, Shahram M. Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces[J].Genetic Resources and Crop Evolution,2010,57(2):307-314
[3]  Timothy D A, Lee H, Peter J F, David J B, Julie E G. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient[J]. Philosophical Transactions of the Royal Society B-biological Sciences,2012,367(1588):547-555
[4]  Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbart M V. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1[J]. Plant Cell,2010,22 (12):4128
[5]  Xu Z Z,Zhou G S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. Journal of Experimental Botany,2008,59(12):3317-3325
[6]  蔡海燕,李莹莹,温立柱,郑成淑,孙摇霞.切花菊品种神马早花突变体鉴定及相关生理特征研究[J].核农学报,2013,27(10):1456-1463
[7]  陈温福,徐正进,张龙步,杨守仁.水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究[J].中国水稻科学,1990,4(4):163-168
[8]  赵秀琴,赵明,肖俊涛,张文绪,关东明,王美云,陆军,臧宁.栽野稻远缘杂交高光效后代及其亲本叶片的气孔特性[J].作物学报,2003,29(2):216-221
[9]  Jensen R G,Bahr J T.Ribulose-1,5-bisphosphate carboxylase-oxygenase[J].Annual Review of Plant Physiology.1977,28(3):379-400
[10]  蒋德安,陆庆,翁晓燕.水稻剑叶衰老期Rubisco活化酶对Rubisco活力和光合速率的调节[J].浙江大学学报:农业与生命科学版,2000,26(2):119-124
[11]  薛崧,汪沛洪.水分胁迫对冬小麦CO2同化作用的影响[J].植物生理学报,1992,18(1):1-7
[12]  Vu J C V, Leon H A, George B. Drought Stress and Elevated CO2 Effects on Soybean Ribulose Bisphosphate Carboxylase Activity and Canopy Photosynthetic Rates[J]. Plant Physiol,1987,83(3):573-578
[13]  曹树青,翟虎渠,钮中一.不同产量潜力水稻品种的剑叶光合特性研究[J].南京农业大学学报,2000,23(3):1-4
[14]  Fukayama H, Uchida N. Relationships between photosynthetic activity and the amounts of Rubisco activase and Rubisco in rice leaves from emergence through senescence[J]. Japanese Journal of Crop Science,1996,65(2):296-302
[15]  Makino A, Mae T, Ohira K.Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysis from ribulose-1,5-bisphosphate carboxylase and leaf conductance[J].Plant and Cell Physiology,1984,25(3):511-521
[16]  王学华.超级稻上部叶片光合能力的研究[J].作物研究, 2004,20 (2):68-71
[17]  李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006
[18]  叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报,2010,34 (6): 727-740
[19]  胡文海,胡雪华,曾建军,段智辉,叶子飘.干旱胁迫对2个辣椒品种光合特性的影响[J].华中农业大学学报,2008,27(6):776-781
[20]  郎莹,张光灿,张征坤,刘顺生,刘德虎,胡小兰.不同土壤水分下山杏光合作用光响应过程及其模拟[J].生态学报,2011,31(16):4499-4508
[21]  童方平,徐艳平,宋庆安,龙应忠,易霭琴,李贵.湿地松优良半同胞家系光和CO2响应曲线特征参数的变异规律[J].南京林业大学学报:自然科学版,2009,33(1):54-58
[22]  Richardson A D, Berlyn G P. Spectral reflectance and photo-synthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA[J]. American Journal of Botany,2002,89(1): 88-94
[23]  孙旭生,林琪,姜雯.施氮量对开花期超高产小麦旗叶CO2响应曲线的影响[J].麦类作物学报,2009,29(2):303-307
[24]  孙彩霞,郝健均,王杰,缪璐,陈振武,齐华.两个品种转基因抗虫棉光合生理的CO2响应[J].生态学报, 2010,30(2):504-510
[25]  Wheeler R M, Mackowiak C L, Yorio N C,John C S. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations? [J].Annals of Botany, 1999,83(3):243-251
[26]  何平.温室效应与植物光合作用—大气CO2浓度升高对植物光合机理的影响分析[J].中南林学院学报,2001,21(1):1-4
[27]  孙谷畴,林植芳,林桂珠.不同光强下生长的几种亚热带森林树木的Rubisco羧化速率和碳酸酐酶的活性[J].武汉植物学研究,2001,19(4):304-310.
[28]  姜振升,孙晓琦,艾希珍,王美玲,毕焕改,王洪涛.低温弱光对黄反幼苗Rubisco与Rubisco活化酶的影响[J].应用生态学报,2010,21(8):2045-2050
[29]  Seenabb H R. Light adaptation/acclimation of photosynthesis and the regulation of ribulose-1,5-bisphosphate carboxylase activity in sun and shade Plants[J]. Plant Physiol,1989,91(1):379-386
[30]  于国华,辉 民,张国树,罗文熹.CO2浓度对黄瓜叶片光合速率、Rubisco活性及呼吸速率的影响[J].华北农学报,1997,12(4):101-106
[31]  姜伟,孙萍,罗文熹,王忠广. CO2浓度增加对黄瓜叶片气孔和Rubisco活性的影响[J].莱阳农学院学报,1998,15(2):132-134
[32]  翁晓燕,蒋德安.生态因子对水稻Rubisco和光合日变化的调节[J].浙江大学学报,2002,28(4):387-391
[33]  Sage R F,Sharkey T D, Seeman J R. The in vivo response of the Ribulose-1,5-bisphosphate carboxylase activation state and the pool size of photosynthetic metabolites to elevated CO2 in phaseolus vulagris L[J]. Planta,1988,174(3):407-416

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133