全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非噪声像素重构的PK-SVD脉冲噪声滤波*

, PP. 977-984

Keywords: 脉冲噪声滤波,非噪声像素重构,K-SVD,分层OMP,字典训练

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于非噪声像素重构的K-SVD(PixelK-SVD)脉冲噪声滤波方法.在图像重构阶段,以非噪声点像素值为优化目标,利用分层重构改进OMP算法求解优化函数,获得重构图像以提高恢复图像质量;在字典训练阶段,PK-SVD不再固定原子的系数,而是使用重复奇异值分解同时更新原子和系数.将PK-SVD与其他3种方法进行比较,实验结果表明,PK-SVD能得到最稀疏化的字典,较好地抑制脉冲噪声,使得滤波图像较清晰且具有较高的峰值信噪比.

References

[1]  Li S T, Yin H T, Fang L Y. Group-Sparse Representation with Dictionary Learning for Medical Image Denoising and Fusion. IEEE Trans on Biomedical Engineering, 2012, 59(12): 3450-3459
[2]  Li H B, Liu F. Image Denoising via Sparse and Redundant Representations over Learned Dictionaries in Wavelet Domain // Proc of the 15th International Conference on Image and Graphics. Xi′an, China, 2009: 754-758
[3]  Protter M, Elad M. Image Sequence Denoising via Sparse and Redundant Representations. IEEE Trans on Image Processing, 2009, 18(1): 27-35
[4]  Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. New York, USA: Springer-Verlag, 2010
[5]  Starck J L, Murtagh F, Fadili J M. Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity. Cambridge, UK: Cambridge University Press, 2010
[6]  Aharon M, Elad M, Bruckstein A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans on Signal Processing, 2006, 54(11): 4311-4322
[7]  Mallat S G, Zhang Z F. Matching Pursuit with Time-Frequency Dictionaries. IEEE Trans on Signal Processing, 1993, 41(12): 3397-3415
[8]  Mairal J, Elad M, Sapiro G. Sparse Representation for Color Image Restoration. IEEE Trans on Image Processing, 2008, 17(1): 53-69
[9]  Mairal J, Sapiro G, Elad M. Learning Multiscale Sparse Representations for Image and Video Restoration. SIAM Multiscale Modeling and Simulation, 2008, 7(1): 214-241
[10]  Deka B, Bora P K. Removal of Random-Valued Impulse Noise Using Sparse Representation // Proc of the National Conference on Communications. Bangalore, India, 2011: 341-345
[11]  Xiao Y, Zeng T Y, Yu J, et al. Restoration of Images Corrupted by Mixed Gaussian-impulse Noise via l1-l0 Minimization. Pattern Recognition, 2011, 44(8): 1708-1720
[12]  Elad M, Aharon M. Image Denoising via Sparse and Redundant Representations over Learned Dictionaries. IEEE Trans on Image Processing, 2006, 15(12): 3736-3745
[13]  Elad M, Milanfar P, Rubinstein R. Analysis Versus Synthesis in Signal Priors. Inverse Problems, 2007, 23(3): 947-968
[14]  Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition // Proc of the 27th Annual Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 1993, I: 40-44
[15]  Chen S S, Donoho D L, Saunders M A. Atomic Decomposition by Basis Pursuit. SIAM Journal of Scientific Computing, 1998, 20(1): 33-61
[16]  Xue Q, Yang C Y, Wang H X. Alternating Direction Method for Salt-and-Pepper Denoising. Acta Automatica Sinica, 2012, 39(12): 2071-2076 (in Chinese)(薛 倩,杨程屹,王化祥.去除椒盐噪声的交替方向法.自动化学报, 2013, 39(12): 2071-2076)
[17]  Zuo Y Y, Zhang B. Robust Hierarchical Framework for Image Classification via Sparse Representation. Tsinghua Science and Technology, 2011, 16(1): 13-21
[18]  Lian Q S, Han D M. Sparse Representation by Dictionary Combined Convolutional Sparse Coding and K-SVD. Systems Engineering and Electronics, 2012, 34(7): 1493-1498 (in Chinese)(练秋生,韩冬梅.基于卷积稀疏编码和K-SVD联合字典的稀疏表示.系统工程与电子技术, 2012, 34(7): 1493-1498)
[19]  Hwang H, Haddad R A. Adaptive Median Filters: New Algorithms and Results. IEEE Trans on Image Processing, 1995, 4(4): 499-502
[20]  Zhou Y Y, Ye Z F, Huang J J. Improved Decision-Based Detail-Preserving Variational Method for Removal of Random-Valued Impulse Noise. IET Image Processing, 2012, 6(7): 976-985
[21]  Chan R H, Ho C W, Nikolova M. Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail-Preserving Regularization. IEEE Trans on Image Processing, 2005, 14(10): 1479-1485

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133