全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离散选择模型研究进展

DOI: 10.18306/dlkxjz.2015.10.008, PP. 1275-1287

Keywords: 离散选择模型,精细化,适用性,新动向

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文从离散选择模型(discretechoicemodel,DCM)体系的一般原理和应用价值出发,总结了各经典模型的基本理论和典型应用,并概括了近来年一些重要的研究新动向。多项Logit模型(multinomiallogitmodel,MNL)是离散选择模型体系的基础,具有简洁、可靠、易实现等优点,但也存在固有的理论缺陷,由此产生了对更加精细化模型的需求。替代的精细化模型中,嵌套Logit模型(nestedlogitmodel,NL)常用于处理备选项相关、“都不选”备选项、数据合并等问题,一般极值模型(generalizedextremevaluemodel,GEV)体系是其更一般的形式;混合Logit模型(mixedlogitmodel,MXL)可用于解决随机偏好问题和多种相关问题,包括备选项相关、面版数据相关、随机系数相关、数据合并等,与之类似的潜在类别模型也有着广泛应用;多项Probit模型(multinomialprobitmodel,MNP)具有极高的灵活性,但其复杂的模型设定与庞大的运算量大大制约了其应用范围。本文在研究新动向上介绍了4个重要的研究关注点由多种经典模型形式相结合而成的复杂模型;面向RP/SP数据、定序、排序、多选等不同数据类型的适宜模型;基于各种受限理性选择策略的更为真实的模型;以及考虑选择的时空背景的模型。

References

[1]  7 [Wang D, Ma L.2009. Simulation analysis of spatiotemporal distribution of visitors in Shanghai World EXPO 2010[J]. Urban Planning Forum, (5): 64-70.]
[2]  8 王德, 王灿, 朱玮, 等. 2015. 基于参观者行为模拟的空间规划与管理研究: 青岛世园会的案例[J]. 城市规划, 39(2): 65-70.
[3]  8 [Wang D, Wang C, Zhu W, et al.2015. Large-scale exposition planning and management optimization based on visitors' behavior simulation: a case study of Qingdao international horticultural exposition 2014[J]. City Planning Review, 39(2): 65-70.]
[4]  9 余建辉, 董冠鹏, 张文忠, 等. 2014. 北京市居民居住: 就业选择的协同性研究[J]. 地理学报, 69(2): 147-155.
[5]  9 [Yu J H, Dong G P, Zhang W Z, et al.2014. The correlated decision process of house moving and job change and its heterogeneity: a case study of Beijing[J]. Acta Geographica Sinica, 69(2): 147-155.]
[6]  10 张文佳, 柴彦威. 2009. 居住空间对家庭购物出行决策的影响[J]. 地理科学进展, 28(3): 362-369.
[7]  10 [Zhang W J, Chai Y W.2009. The Influence of residential space on household shopping tour decision-making behaviors[J]. Progress in Geography, 28(3): 362-369.]
[8]  11 赵艳枝. 2006. 外来人口的居留意愿与合理流动: 以北京市顺义区外来人口为例[J]. 南京人口管理干部学院学报, 22(4): 17-19.
[9]  11 [Zhao Y Z.2006. Residing preference and rational floating of migrant population: an example from district Shunyi, Beijing[J]. Journal of Nanjing College for Population Programme Management, 22(4): 17-19.]
[10]  12 郑思齐, 符育明, 刘洪玉. 2004. 利用排序多元Logit模型研究城市居民的居住区位选择[J]. 地理科学进展, 23(5): 86-93.
[11]  12 [Zheng S Q, Fu Y M, Liu H Y.2004. A study on location choice decision of urban residents using ordered Logit model[J]. Progress in Geography, 23(5): 86-93.]
[12]  13 朱玮, 庞宇琦, 王德, 等. 2012. 公共自行车系统影响下居民出行的变化与机制研究: 以上海闵行区为例[J]. 城市规划学刊, (5): 76-81.
[13]  13 [Zhu W, Pang Y Q, Wang D, et al.2012. Travel behavior change after the introduction of public bicycle systems: a case study of Minhang district, Shanghai[J]. Urban Planning Forum, (5): 76-81.]
[14]  14 朱玮, 王德. 2008. 南京东路消费者的空间选择行为与回游轨迹[J]. 城市规划, 32(3): 33-40.
[15]  14 [Zhu W, Wang D.2008. Space choice behavior and multi-stop tracks of consumers in East Nanjing Road[J]. City Planning Review, 32(3): 33-40.]
[16]  15 Adamowicz W, Swait J, Boxall P, et al.1997. Perceptions versus objective measures of environmental quality in combined revealed and stated preference models of environmental valuation[J]. Journal of Environmental Economics and Management, 32(1): 65-84.
[17]  16 Attanasio O P, Meghir C, Santiago A.2012. Education choices in Mexico: using a structural model and a randomized experiment to evaluate Progresa[J]. The Review of Economic Studies, 79(1): 37-66.
[18]  17 Báez-Montenegro A, Bedate A M, Herrero L C, et al.2012. Inhabitants' willingness to pay for cultural heritage: a case study in Valdivia, Chile, using contingent valuation[J]. Journal of Applied Economics, 15(2): 235-258.
[19]  18 B?k A, Rybicka A.2005. Application of discrete choice methods in consumer preference analysis[M]//Baier D, Wernecke, K-D. Innovations in classification, data science, and information systems. Berlin Heidelberg, Germany: Springer: 305-312.
[20]  19 Behrens C, Pels E.2012. Intermodal competition in the London-Paris passenger market: high-speed rail and air transport[J]. Journal of Urban Economics, 71(3): 278-288.
[21]  20 Ben-Akiva M, Lerman S R.1985. Discrete choice analysis: theory and application to travel demand[M]. Cambridge, UK: Massachusetts Institute of Technology Press.
[22]  21 Bhat C R, Castelar S.2002. A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area[J]. Transportation Research Part B: Methodological, 36(7): 593-616.
[23]  22 Bhat C R, Gossen R.2004. A mixed multinomial logit model analysis of weekend recreational episode type choice[J]. Transportation Research Part B: Methodological, 38(9): 767-787.
[24]  23 Bhat C R, Guo J.2004. A mixed spatially correlated logit model: formulation and application to residential choice modeling[J]. Transportation Research Part B: Methodological, 38(2): 147-168.
[25]  24 Bhat C R, Sidharthan R.2011. A simulation evaluation of the maximum approximate composite marginal likelihood (MACML) estimator for mixed multinomial probit models[J]. Transportation Research Part B: Methodological, 45(7): 940-953.
[26]  64 Jou R C, Hensher D A, Hsu T L.2011. Airport ground access mode choice behavior after the introduction of a new mode: a case study of Taoyuan International Airport in Taiwan[J]. Transportation Research Part E: Logistics and Transportation Review, 47(3): 371-381.
[27]  65 Jumbe C B L, Angelsen A.2011. Modeling choice of fuelwood source among rural households in Malawi: a multinomial probit analysis[J]. Energy Economics, 33(5): 732-738.
[28]  66 Koppelman F S, Wen C H.2000. The paired combinatorial logit model: properties, estimation and application[J]. Transportation Research Part B: Methodological, 34(2): 75-89.
[29]  87 Schmidheiny K, Brülhart M.2011. On the equivalence of location choice models: conditional logit, nested logit and Poisson[J]. Journal of Urban Economics, 69(2): 214-222.
[30]  88 Shen J Y.2009. Latent class model or mixed logit model? A comparison by transport mode choice data[J]. Applied Economics, 41(22): 2915-2924.
[31]  89 Smith M D.2005. State dependence and heterogeneity in fishing location choice[J]. Journal of Environmental Economics and Management, 50(2): 319-340.
[32]  90 Suárez A, Rodr??guez del Bosque I, Rodr??guez-Poo J M, et al.2004. Accounting for heterogeneity in shopping centre choice models[J]. Journal of Retailing and Consumer Services, 11(2): 119-129.
[33]  91 Swait J.2001. A non-compensatory choice model incorporating attribute cutoffs[J]. Transportation Research Part B: Methodological, 35(10): 903-928.
[34]  92 Teichert T, Shehu E, von Wartburg I.2008. Customer segmentation revisited: the case of the airline industry[J]. Transportation Research Part A: Policy and Practice, 42(1): 227-242.
[35]  93 Teye C, Davidson P, Culley R.2014. Simultaneously accounting for inter-alternative correlation and taste heterogeneity among long distance travelers using mixed nested logit (MXNL) Model so as to improve toll road traffic and revenue forecast[J]. Transportation Research Procedia, 1(1): 24-35.
[36]  1 蔡嘉璐, 王德, 朱玮. 2011. 南京东路商业步行街消费者行为变化研究: 2001年与2007年的比较[J]. 人文地理, 26(6): 89-97.
[37]  1 [Cai J L, Wang D, Zhu W.2011. Study on changes of consumer behavior in East Nanjing Road: a comparison of the year 2001 and 2007[J]. Human Geography, 26(6): 89-97.]
[38]  2 陈梓烽, 柴彦威. 2014. 通勤时空弹性对居民通勤出发时间决策的影响: 以北京上地—清河地区为例[J]. 城市发展研究, 21(12): 65-76.
[39]  2 [Chen Z F, Chai Y W.2014. Modelling the choice of departure time for commuting trip chains incorporating space-time flexibility variables: evidence from the Shangdi-Qinghe area of Beijing[J]. Urban Development Studies, 21(12): 65-76.]
[40]  3 关宏志. 2004. 非集计模型: 交通行为分析的工具[M]. 北京: 人民交通出版社.
[41]  3 [Guan H Z.2004. Disaggregate model: a tool of traffic behavior analysis[M]. Beijing, China: China Communications Press.]
[42]  4 马静, 柴彦威. 2011. 休息日与工作日居民购物时空间决策因素及差异比较[J]. 地理科学, 31(1): 29-35.
[43]  4 [Ma J, Chai Y W.2011. Spatio-temporal choice of individuals' shopping behavior and their differences between weekday and weekend[J]. Scientia Geographica Sinica, 31(1): 29-35.]
[44]  5 聂冲, 贾生华. 2005. 离散选择模型的基本原理及其发展演进评介[J]. 数量经济技术经济研究, (11): 151-159.
[45]  5 [Nie C, Jia S H.2005. Research on the theoretical basis and evolution of discrete choice models[J]. The Journal of Quantitative & Technical Economics, (11): 151-159.]
[46]  94 Todd P E, Wolpin K I.2010. Structural estimation and policy evaluation in developing countries[J]. Annual Review of Economics, 2(1): 21-50.
[47]  95 Train K E.2009. Discrete choice methods with simulation[M]. 2nd ed. Cambridge, UK: Cambridge University Press.
[48]  6 潘晖婧, 朱玮, 王德. 2014. 基于路径选择行为的自行车出行环境评价和改善[J]. 上海城市规划, (2): 12-18.
[49]  6 [Pan H J, Zhu W, Wang D.2014. Evaluation and improvement of bicycle travel environment based on the cycling route choice behavior[J]. Shanghai Urban Planning Review, (2): 12-18.]
[50]  7 王德, 马力. 2009. 2010年上海世博会参观者时空分布模拟分析[J]. 城市规划学刊, (5): 64-70.
[51]  25 Borgers A W J, Smeets I M E, Kemperman A D A M, et al.2006. Simulation of micro pedestrian behaviour in shopping streets[M]//van Leeuwen J P, Timmermans H J P. Progress in design & decision support systems in architecture and urban planning. Heeze, Netherland: Eindhoven University of Technology: 101-116.
[52]  26 Borgers A M J, Timmermans H J P.2005. Modelling pedestrian behaviour in downtown shopping areas[C]//Proceedings of computers in urban planning and urban management conference. London, UK: CUPUM.
[53]  27 B?rjesson M.2008. Joint RP-SP data in a mixed logit analysis of trip timing decisions[J]. Transportation Research Part E: Logistics and Transportation Review, 44(6): 1025-1038.
[54]  28 Breffle W S, Morey E R, Lodder T S.1998. Using contingent valuation to estimate a neighbourhood's willingness to pay to preserve undeveloped urban land[J]. Urban Studies, 35(4): 715-727.
[55]  29 Brownstone D, Train K.1998. Forecasting new product penetration with flexible substitution patterns[J]. Journal of Econometrics, 89(1): 109-129.
[56]  30 Bunch D S, Kitamura R.1989. Multinomial probit model estimation revisited: testing of new algorithms and evaluation of alternative model specifications for trinomial models of household car ownership[R]. Research Report UCD-TRG-RR-89-4. Berkeley, CA: Institute of Transportation Studies, University of California.
[57]  31 Campbell D, Hess S. October, 2009. Outlying sensitivities in discrete choice data: causes, consequences and remedies[C]//Proceedings of the European Transport Conference. Netherland: Association of European Transport.
[58]  32 Campbell D, Hutchinson W G, Scarpa R.2006. Lexicographic preferences for rural environmental landscape improvements: implications on individual-specific willingness to pay estimates[R]. RERC Working Paper N610.
[59]  33 Chatterjee K.2011. Modelling the dynamics of bus use in a changing travel environment using panel data[J]. Transportation, 38(3): 487-509.
[60]  34 Chintagunta P K, Nair H S.2011. Structural workshop paper-discrete-choice models of consumer demand in marketing[J]. Marketing Science, 30(6): 977-996.
[61]  35 Dargay J, Hanly M.2007. Volatility of car ownership, commuting mode and time in the UK[J]. Transportation Research Part A: Policy and Practice, 41(10): 934-948.
[62]  36 De Dios Ortúzar J.1983. Nested logit models for mixed-mode travel in urban corridors[J]. Transportation Research Part A: General, 17(4): 283-299.
[63]  37 De Dios Ortúzar J, Simonetti C.2008. Modelling the demand for medium distance air travel with the mixed data estimation method[J]. Journal of Air Transport Management, 14(6): 297-303.
[64]  38 Dow J K, Endersby J W.2004. Multinomial probit and multinomial logit: a comparison of choice models for voting research[J]. Electoral studies, 23(1): 107-122.
[65]  39 Espino R, de Dios Ortúzar J, Román C.2007. Understanding suburban travel demand: flexible modelling with revealed and stated choice data[J]. Transportation Research Part A: Policy and Practice, 41(10): 899-912.
[66]  40 Feo M, Espino R, García L.2011. An stated preference analysis of Spanish freight forwarders modal choice on the south-west Europe Motorway of the Sea[J]. Transport Policy, 18(1): 60-67.
[67]  41 Ferdous N, Eluru N, Bhat C R, et al.2010. A multivariate ordered-response model system for adults' weekday activity episode generation by activity purpose and social context[J]. Transportation Research Part B: Methodological, 44(8-9): 922-943.
[68]  42 Goos P, Vermeulen B, Vandebroek M.2010. D-optimal conjoint choice designs with no-choice options for a nested logit model[J]. Journal of Statistical Planning and Inference, 140(4): 851-861.
[69]  43 Greene W H.2012. NLOGIT version 5 reference guide[S]. Plainview, NY: Econometric Software.
[70]  44 Greene W H, Hensher D A.2003. A latent class model for discrete choice analysis: contrasts with mixed logit[J]. Transportation Research Part B: Methodological, 37(8): 681-698.
[71]  45 Greene W H, Hensher D A.2012. Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model[J]. Applied Economics, 45(14): 1897-1902.
[72]  46 Greene W H, Hensher D A, Rose J M.2005. Using classical simulation-based estimators to estimate individual WTP values[M]//Scarpa R, Alberini A. Applications of simulation methods in environmental and resource economics. Dordrecht, Netherland: Springer: 17-33.
[73]  47 Grigolon A B, Borgers A W J, Kemperman A D A M, et al.2014. Vacation length choice: a dynamic mixed multinomial logit model[J]. Tourism Management, 41: 158-167.
[74]  48 Haaijer R, Kamakura W A, Wedel M.2001. The ‘no-choice'alternative in conjoint choice experiments[J]. International Journal of Market Research, 43(1): 93-106.
[75]  49 Hayakawa K, Tsubota K.2014. Location choice in low-income countries: evidence from Japanese investments in East Asia[J]. Journal of Asian Economics, 33: 30-43.
[76]  50 Hensher D A.1999. HEV choice models as a search engine for the specification of nested logit tree structures[J]. Marketing Letters, 10(4): 333-343.
[77]  51 Hensher D A, Bradley M.1993. Using stated response choice data to enrich revealed preference discrete choice models[J]. Marketing Letters, 4(2): 139-151.
[78]  52 Hensher D A, Li Z.2010. Accounting for differences in modelled estimates of RP, SP and RP/SP direct petrol price elasticities for car mode choice: a warning[J]. Transport Policy, 17: 191-195.
[79]  53 Hensher D A, Rose J M, Greene W H.2005. Applied choice analysis: a primer[M]. Cambridge, UK: Cambridge University Press.
[80]  54 Hensher D A, Rose J M, Greene W H.2008. Combining RP and SP data: biases in using the nested logit ‘trick': contrasts with flexible mixed logit incorporating panel and scale effects[J]. Journal of Transport Geography, 16(2): 126-133.
[81]  55 Hess S.2007. Posterior analysis of random taste coefficients in air travel behaviour modelling[J]. Journal of Air Transport Management, 13(4): 203-212.
[82]  56 Hess S.2010. Conditional parameter estimates from mixed logit models: distributional assumptions and a free software tool[J]. Journal of Choice Modelling, 3(2): 134-152.
[83]  57 Hess S, Ben-Akiva M, Gopinath D, et al. December, 2009. Advantages of latent class over continuous mixture of logit models in capturing heterogeneity[C]//Proceedings of the 12th International Conference on Travel Behavior Research. Jaipur, India: Transport Research Laboratory.
[84]  58 Hess S, Fowler M, Adler T, et al.2012. A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study[J]. Transportation, 39(3): 593-625.
[85]  59 Hess S, Hensher D A.2010. Using conditioning on observed choices to retrieve individual-specific attribute processing strategies[J]. Transportation Research Part B: Methodological, 44(6): 781-790.
[86]  60 Hess S, Polak J W.2005. Mixed logit modelling of airport choice in multi-airport regions[J]. Journal of Air Transport Management, 11(2): 59-68.
[87]  61 Hess S, Rose J M.2009. Allowing for intra-respondent variations in coefficients estimated on repeated choice data[J]. Transportation Research Part B: Methodological, 43(6): 708-719.
[88]  62 Hole A R.2008. Modelling heterogeneity in patients' preferences for the attributes of a general practitioner appointment[J]. Journal of Health Economics, 27(4): 1078-1094.
[89]  63 Johansson M V, Heldt T, Johansson P.2006. The effects of attitudes and personality traits on mode choice[J]. Transportation Research Part A: Policy and Practice, 40(6): 507-525.
[90]  67 Kumar S, Kant S.2007. Exploded logit modeling of stakeholders' preferences for multiple forest values[J]. Forest Policy and Economics, 9(5): 516-526.
[91]  68 Lapparent M, Cernicchiaro G.2012. How long to own and how much to use a car? A dynamic discrete choice model to explain holding duration and driven mileage[J]. Economic Modelling, 29(5): 1737-1744.
[92]  69 Lee M, Khelifa A, Garrow L A, et al.2012. An analysis of destination choice for opaque airline products using multidimensional binary logit models[J]. Transportation Research Part A: Policy and Practice, 46(10): 1641-1653.
[93]  70 LeSage J P.2000. Bayesian estimation of limited dependent variable spatial autoregressive models[J]. Geographical Analysis, 32(1): 19-35.
[94]  71 Li Z B, Wang W, Liu P, et al.2012. Physical environments influencing bicyclists' perception of comfort on separated and on-street bicycle facilities[J]. Transportation Research Part D: Transport and Environment, 17(3): 256-261.
[95]  72 Lijesen M G.2006. A mixed logit based valuation of frequency in civil aviation from SP-data[J]. Transportation Research Part E: Logistics and Transportation Review, 42(2): 82-94.
[96]  73 Lindberg K, Veisten K.2012. Local and non-local preferences for nature tourism facility development[J]. Tourism Management Perspectives, 4: 215-222.
[97]  74 Lo H K, Yip C W, Wan Q K.2004. Modeling competitive multi-modal transit services: a nested logit approach[J]. Transportation Research Part C: Emerging Technologies, 12(3-4): 251-272.
[98]  75 Louviere J J, Hensher D A, Swait J D.2000. Stated choice methods: analysis and applications[M]. Cambridge, UK: Cambridge University Press.
[99]  76 Marcucci E, Gatta V.2011. Regional airport choice: consumer behaviour and policy implications[J]. Journal of Transport Geography, 19(1): 70-84.
[100]  77 McFadden D.1978. Modeling the choice of residential location[J]. Transportation Research Record, 673: 72-77.
[101]  78 McFadden D. July, 2000. Disaggregate behavioral travel demand's RUM side: a 30-year retrospective[C]//Presented at conference on the international association of travel behavior research. Brisbane, Australia: IABR.
[102]  79 McFadden D, Train K.2000. Mixed MNL models for discrete response[J]. Journal of applied Econometrics, 15(5): 447-470.
[103]  80 McKee D.2006. A dynamic model of retirement in Indonesia[R]. CCPR Working Paper Series, No.5.California Center for Population Research.
[104]  81 Montgomery M.2002. A nested logit model of the choice of a graduate business school[J]. Economics of Education Review, 21(5): 471-480.
[105]  82 Müller S, Haase K.2014. Customer segmentation in retail facility location planning[J]. Business Research, 7(2): 235-261.
[106]  83 Páez A.2006. Exploring contextual variations in land use and transport analysis using a probit model with geographical weights[J]. Journal of Transport Geography, 14(3): 167-176.
[107]  84 Papola A.2004. Some developments on the cross-nested logit model[J]. Transportation Research Part B: Methodological, 38(9): 833-851.
[108]  85 Rasciute S, Pentecost E J.2010. A nested logit approach to modelling the location of foreign direct investment in the Central and Eastern European Countries[J]. Economic Modelling, 27(1): 32-39.
[109]  86 Sarma S, Simpson W.2007. A panel multinomial logit analysis of elderly living arrangements: evidence from aging in Manitoba longitudinal data, Canada[J]. Social Science &Medicine, 65(12): 2539-2552.
[110]  96 Treiman T, Gartner J.2006. Are residents willing to pay for their community forests? Results of a contingent valuation survey in Missouri, USA[J]. Urban Studies, 43(9): 1537-1547.
[111]  97 Varela E, Jacobsen J B, Soli?o M.2014. Understanding the heterogeneity of social preferences for fire prevention management[J]. Ecological Economics, 106: 91-104.
[112]  98 Wang X K, Kockelman K M, Lemp J D.2012. The dynamic spatial multinomial probit model: analysis of land use change using parcel-level data[J]. Journal of Transport Geography, 24: 77-88.
[113]  99 Wen C H, Koppelman F S.2001. The generalized nested logit model[J]. Transportation Research Part B: Methodological, 35(7): 627-641.
[114]  100 Wen C H, Lai S C.2010. Latent class models of international air carrier choice[J]. Transportation Research Part E: Logistics and Transportation Review, 46(2): 211-221.
[115]  101 Wen C H, Wang W C, Fu C.2012. Latent class nested logit model for analyzing high-speed rail access mode choice[J]. Transportation Research Part E: Logistics and Transportation Review, 48(2): 545-554.
[116]  102 Yai T, Iwakura S, Morichi S.1997. Multinomial probit with structured covariance for route choice behavior[J]. Transportation Research Part B: Methodological, 31(3): 195-207.
[117]  103 Yang C W, Sung Y C.2010. Constructing a mixed-logit model with market positioning to analyze the effects of new mode introduction[J]. Journal of Transport Geography, 18(1): 175-182.
[118]  104 Ye F, Lord D.2014. Comparing three commonly used crash severity models on sample size requirements: multinomial logit, ordered probit and mixed logit models[J]. Analytic Methods in Accident Research, 1: 72-85.
[119]  105 Zhou B, Kockelman K M.2008. Neighborhood impacts on land use change: a multinomial logit model of spatial relationships[J]. The Annals of Regional Science, 42(2): 321-340.
[120]  106 Zhu W, Timmermans H.2008. Bounded rationality choice model incorporating attribute threshold, mental effort and risk attitude: illustration to pedestrian walking direction choice decision in shopping streets[M]//Klingsch W W F, Rogsch C, Schadschneider A, et al. Pedestrian and evacuation dynamics 2008. Heidelberg, Germany: Springer: 425-437.
[121]  107 Zwerina K.1997. Discrete choice experiments in marketing[M]. Heidelberg, Germany: Springer.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133