全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

流体剪切辅助超临界CO2技术制备石墨烯

DOI: 10.1360/N972015-00293, PP. 2561-2566

Keywords: 超临界二氧化碳,石墨烯,流体剪切,扩散强化,制备

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯具有的各种优异性能使其在新材料领域具有十分广泛的应用前景,但如何批量低成本制备高质量的石墨烯是实现其大规模应用前亟待解决的问题.本文采用流体剪切辅助超临界CO2剥离法,以石墨粉为原料成功制备出高质量的石墨烯.运用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)及拉曼光谱等技术对所制得的石墨烯进行分析表征,发现得到的石墨烯具有完整的晶格结构及很高的导电率,其中1~10层石墨烯含量达到90%以上.本技术有望提供一种清洁、高效制备高质量石墨烯的方法.

References

[1]  1 Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films.Science, 2004, 306:666-669
[2]  2 Geim A K, Novoselov K S.The rise of graphene.Nat Mater, 2007, 6:183-191
[3]  3 Lee C, Wei X, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science, 2008, 321:385-388
[4]  4 Morozov S, Novoselov K, Katsnelson M, et al.Giant intrinsic carrier mobilities in graphene and its bilayer.Phys Rev Lett, 2008, 100:016602
[5]  5 Bolotin K I, Sikes K J, Jiang Z, et al.Ultrahigh electron mobility in suspended graphene.Solid State Commun, 2008, 146:351-355
[6]  6 Balandin A A, Ghosh S, Bao W, et al.Superior thermal conductivity of single-layer graphene.Nano Lett, 2008, 8:902-907
[7]  7 Park S, Ruoff R S.Chemical methods for the production of graphenes.Nat Nanotechnol, 2009, 4:217-224
[8]  8 Stoller M D, Park S, Zhu Y, et al.Graphene-based ultracapacitors.Nano Lett, 2008, 8:3498-3502
[9]  9 Nair R R, Blake P, Grigorenko A N, et al.Fine structure constant defines visual transparency of graphene.Science, 2008, 320:1308
[10]  10 Novoselov K S, Geim A K, Morozov S V, et al.Two-dimensional gas of massless dirac fermions in graphene.Nature, 2005, 438:197-200
[11]  11 Kim H, Abdala A A, Macosko C W.Graphene/polymer nanocomposites.Macromolecules, 2010, 43:6515-6530
[12]  12 Liu Y C, Dong X C, Chen P.Biological and chemical sensors based on graphene materials.Chem Soc Rev, 2012, 41:2283-2307
[13]  13 Bai H, Li C, Shi G Q.Functional composite materials based on chemically converted graphene.Adv Mater, 2011, 23:1089-1115
[14]  14 Huang X, Zeng Z Y, Fan Z X, et al.Graphene-based electrodes.Adv Mater, 2012, 24:5979-6004
[15]  15 Huang X, Yin Z, Wu S, et al.Graphene-based materials:Synthesis, characterization, properties, and applications.Small, 2011, 7:1876-1902
[16]  16 Huang X, Qi X, Boey F, et al.Graphene-based composites.Chem Soc Rev, 2012, 41:666-686
[17]  17 Sutter P W, Flege J I, Sutter E A.Epitaxial graphene on ruthenium.Nat Mater, 2008, 7:406-411
[18]  18 Reina A, Jia X, Ho J, et al.Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.Nano Lett, 2008, 9:30-35
[19]  19 Chae S J, Güne? F, Kim K K, et al.Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition:Wrinkle formation.Adv Mater, 2009, 21:2328-2333
[20]  20 Wang X B, You H J, Liu F M, et al.Large-scale synthesis of few-layered graphene using CVD.Chem Vap Depos, 2009, 15:53-56
[21]  21 Kim K S, Zhao Y, Jang H, et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes.Nature, 2009, 457:706-710
[22]  35 Kosynkin D V, Higginbotham A L, Sinitskii A, et al.Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.Nature, 2009, 458:872-876
[23]  36 Zhang W X, Cui J C, Tao C A, et al.A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach.Angew Chem Int Ed, 2009, 48:5864-5868
[24]  37 Kim C D, Min B K, Jung W S.Preparation of graphene sheets by the reduction of carbon monoxide.Carbon, 2009, 47:1610-1612
[25]  38 Meyer J C, Geim A K, Katsnelson M I, et al.The structure of suspended graphene sheets.Nature, 2007, 446:60-63
[26]  39 Becerril H A, Mao J, Liu Z, et al.Evaluation of solution-processed reduced graphene oxide films as transparent conductors.ACS Nano, 2008, 2:463-470
[27]  40 Shin H J, Kim K K, Benayad A, et al.Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance.Adv Func Mater, 2009, 19:1987-1992
[28]  41 Cassagneau T, Fendler J H.Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets.J Phys Chem B, 1999, 103:1789-1793
[29]  42 Stankovich S, Piner R D, Chen X, et al.Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate).J Mater Chem, 2006, 16:155-158
[30]  43 Stankovich S, Dikin D A, Piner R D, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.Carbon, 2007, 45:1558-1565
[31]  44 Fan X B, Peng W X, Li Y, et al.Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation.Adv Mater, 2008, 20:4490-4493
[32]  45 Li D, Müller M B, Gilje S, et al.Processable aqueous dispersions of graphene nanosheets.Nat Nanotechnol, 2008, 3:101-105
[33]  46 Zhu Y, Stoller M D, Cai W, et al.Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets.ACS Nano, 2010, 4:1227-1233
[34]  47 Chen W F, Yan L F.Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure.Nanoscale, 2010, 2:559-563
[35]  48 Dreyer D R, Murali S, Zhu Y, et al.Reduction of graphite oxide using alcohols.J Mater Chem, 2011, 21:3443-3447
[36]  49 Wei A, Wang J X, Long Q, et al.Synthesis of high-performance graphene nanosheets by thermal reduction of graphene oxide.Mater Res Bull, 2011, 46:2131-2134
[37]  50 Zhang H B, Wang J W, Yan Q, et al.Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide.J Mater Chem, 2011, 21:5392-5397
[38]  51 McAllister M J, Li J L, Adamson D H, et al.Single sheet functionalized graphene by oxidation and thermal expansion of graphite.Chem Mater, 2007, 19:4396-4404
[39]  52 Chen W, Yan L, Bangal P R.Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves.Carbon, 2010, 48:1146-1152
[40]  53 Schniepp H C, Li J L, McAllister M J, et al.Functionalized single graphene sheets derived from splitting graphite oxide.J Phys Chem B, 2006, 110:8535-8539
[41]  54 Wang Z L, Xu D, Huang Y, et al.Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries.Chem Commun, 2012, 48:976-978
[42]  55 Wang Z J, Zhou X Z, Zhang J, et al.Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase.J Phys Chem C, 2009, 113:14071-14075
[43]  56 Zhou X Z, Huang X, Qi X Y, et al.In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces.J Phys Chem C, 2009, 113:10842-10846
[44]  57 Donner S, Li H W, Yeung E S, et al.Fabrication of optically transparent carbon electrodes by the pyrolysis of photoresist films: Approach to single-molecule spectroelectrochemistry.Anal Chem, 2006, 78:2816-2822
[45]  58 Qi X Y, Pu K Y, Zhou X Z, et al.Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents.Small, 2010, 6:663-669
[46]  59 Williams G, Seger B, Kamat P V.TiO2-graphene nanocomposites.UV-assisted photocatalytic reduction of graphene oxide.ACS Nano, 2008, 2:1487-1491
[47]  60 Gao J, Liu F, Liu Y L, et al.Environment-friendly method to produce graphene that employs vitamin c and amino acid.Chem Mater, 2010, 22:2213-2218
[48]  61 Hernandez Y, Nicolosi V, Lotya M, et al.High-yield production of graphene by liquid-phase exfoliation of graphite.Nat Nanotechnol, 2008, 3:563-568
[49]  62 Khan U, Porwal H, O’Neill A, et al.Solvent-exfoliated graphene at extremely high concentration.Langmuir, 2011, 27:9077-9082
[50]  63 Lotya M, Hernandez Y, King P J, et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions.J Am Chem Soc, 2009, 131:3611-3620
[51]  64 O’Neill A, Khan U, Nirmalraj P N, et al.Graphene dispersion and exfoliation in low boiling point solvents.J Phys Chem C, 2011, 115:5422-5428
[52]  65 Hernandez Y, Lotya M, Rickard D, et al.Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery.Langmuir, 2010, 26:3208-3213
[53]  66 Khan U, O’Neill A, Lotya M, et al.High-concentration solvent exfoliation of graphene.Small, 2010, 6:864-871
[54]  67 Khan U, O’Neill A, Porwal H, et al.Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation.Carbon, 2012, 50:470-475
[55]  68 Keeley G P, O’Neill A, Holzinger M, et al.DMF-exfoliated graphene for electrochemical nadh detection.Phys Chem Chem Phys, 2011, 13:7747-7750
[56]  69 Hamilton C E, Lomeda J R, Sun Z, et al.High-yield organic dispersions of unfunctionalized graphene.Nano Lett, 2009, 9:3460-3462
[57]  70 Coleman J N.Liquid-phase exfoliation of nanotubes and graphene.Adv Func Mater, 2009, 19:3680-3695
[58]  71 Hummers W S, Offeman R E.Preparation of graphitic oxide.J Am Chem Soc, 1958, 80:1339-1339
[59]  72 Brodie B C.On the atomic weight of graphite.Philos Trans R Soc london, 1859, 149:249-259
[60]  73 Staudenmaier L.Verfahren zur darstellung der graphitsaure.Ber Deut Chem Ges, 1898, 31:1481-1499
[61]  74 Dhakate S R, Chauhan N, Sharma S, et al.An approach to produce single and double layer graphene from re-exfoliation of expanded graphite.Carbon, 2011, 49:1946-1954
[62]  75 An X, Simmons T, Shah R, et al.Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications.Nano Lett, 2010, 10:4295-4301
[63]  76 Veca L M, Lu F, Meziani M J, et al.Polymer functionalization and solubilization of carbon nanosheets.Chem Commun, 2009, 10:2565-2567
[64]  77 Xu Y X, Bai H, Lu G W, et al.Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets.J Am Chem Soc, 2008, 130:5856-5857
[65]  78 Hao R, Qian W, Zhang L H, et al.Aqueous dispersions of TCNQ-anion-stabilized graphene sheets.Chem Commun, 2008, 48:6576-6578
[66]  79 Li X L, Wang X R, Zhang L, et al.Chemically derived, ultrasmooth graphene nanoribbon semiconductors.Science, 2008, 319:1229-1232
[67]  80 Li X L, Zhang G Y, Bai X D, et al.Highly conducting graphene sheets and langmuir-blodgett films.Nat Nanotechnol, 2008, 3:538-542
[68]  81 Qi X, Pu K Y, Li H, et al.Amphiphilic graphene composites.Angew Chem Int Ed, 2010, 49:9426-9429
[69]  82 Eckert C A, Knutson B L, Debenedetti P G.Supercritical fluids as solvents for chemical and materials processing.Nature, 1996, 383:313-318
[70]  83 Chaudhary A, Beckman E J, Russell A J.Rational control of polymer molecular weight and dispersity during enzyme-catalyzed polyester synthesis in supercritical fluids.J Am Chem Soc, 1995, 117:3728-3733
[71]  84 Serhatkulu G K, Dilek C, Gulari E.Supercritical CO2 intercalation of layered silicates.J Supercrit Fluid, 2006, 39:264-270
[72]  85 Johnston K P, Shah P S.Making nanoscale materials with supercritical fluids.Science, 2004, 303:482-483
[73]  86 Pu N W, Wang C A, Sung Y, et al.Production of few-layer graphene by supercritical CO2 exfoliation of graphite.Mater Lett, 2009, 63:1987-1989
[74]  87 Horsch S, Serhatkulu G, Gulari E, et al.Supercritical CO2 dispersion of nano-clays and clay/polymer nanocomposites.Polymer, 2006, 47:7485-7496
[75]  88 Li J, Xu Q, Peng Q, et al.Supercritical CO2-assisted synthesis of polystyrene/clay nanocomposites via in situ intercalative polymerization.J Appl Poly Sci, 2006, 100:671-676
[76]  89 Zheng X L, Xu Q, Li J B, et al.High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers.RSC Adv, 2012, 2:10632-10638
[77]  90 Rangappa D, Sone K, Wang M, et al.Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation.Chem Eur J, 2010:16:6488-6494
[78]  91 Liu C, Hu G, Gao H.Preparation of few-layer and single-layer graphene by exfoliation of expandable graphite in supercritical N,N-dimethylformamide.J Supercrit Fluid, 2012, 63:99-104
[79]  92 Jang J H, Rangappa D, Kwon Y U, et al.Direct preparation of 1-PSA modified graphene nanosheets by supercritical fluidic exfoliation and its electrochemical properties.J Mater Chem, 2011, 21:3462-3466
[80]  93 Li L H, Zheng X L, Wang J J, et al.Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide.ACS Sust Chem Eng, 2013, 1:144-151
[81]  94 Li L H, Zhang J N, Liu Y Q, et al.Facile fabrication of Pt nanoparticles on 1-pyrenamine functionalized graphene nanosheets for methanol electrooxidation.ACS Sust Chem Eng, 2013, 1:527-533
[82]  95 Petrov P, Stassin F, Pagnoulle C, et al.Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers.Chem Commun, 2003, (23):2904-2905
[83]  96 Etika K C, Jochum F D, Theato P, et al.Temperature controlled dispersion of carbon nanotubes in water with pyrene-functionalized poly(N-cyclopropylacrylamide).J Am Chem Soc, 2009, 131:13598-13599
[84]  97 Liu J, Bibari O, Mailley P, et al.Stable non-covalent functionalisation of multi-walled carbon nanotubes by pyrene-polyethylene glycol through π-π stacking.New J Chem, 2009, 33:1017-1024
[85]  98 Yan Y, Cui J, P?tschke P, et al.Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites.Carbon, 2010, 48:2603-2612
[86]  99 Knights S D, Colbow K M, St-Pierre J, et al.Aging mechanisms and lifetime of PEFC and DMFC.J Power Sources, 2004, 127:127-134
[87]  100 Kundu P, Nethravathi C, Deshpande P A, et al.Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene:Synergistic co-reduction mechanism and high catalytic activity.Chem Mater, 2011, 23:2772-2780
[88]  101 Wang S, Wang X, Jiang S P.PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation.Langmuir, 2008, 24:10505-10512
[89]  102 Zhang W, Chen J, Swiegers G F, et al.Microwave-assisted synthesis of Pt/CNT nanocomposite electrocatalysts for PEM fuel cells.Nanoscale, 2010, 2:282-286
[90]  103 Sharma S, Ganguly A, Papakonstantinou P, et al.Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol.J Phys Chem C, 2010, 114:19459-19466
[91]  104 Huang H J, Chen H Q, Sun D P, et al.Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells.J Power Sources, 2012, 204:46-52
[92]  105 Khosravi M, Amini M K.Flame synthesis of carbon nanofibers on carbon paper:Physicochemical characterization and application as catalyst support for methanol oxidation.Carbon, 2010, 48:3131-3138
[93]  106 Xin Y C, Liu J G, Jie X, et al.Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts.Electro Acta, 2012, 60:354-358
[94]  22 Li X S, Cai W W, An J H, et al.Large-area synthesis of high-quality and uniform graphene films on copper foils.Science, 2009, 324:1312-1314
[95]  23 Gao L B, Ren W C, Xu H L, et al.Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.Nat Commun, 2012, 3:699
[96]  24 Rollings E, Gweon G H, Zhou S Y, et al.Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate.J Phys Chem Solids, 2006, 67:2172-2177
[97]  25 Mathieu C, Barrett N, Rault J, et al.Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC{0001}.Phys Rev B, 2011, 83:235436
[98]  26 Van Wesep R G, Chen H, Zhu W, et al.Communication:Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111).J Chem Phys, 2011, 134:171105
[99]  27 Berger C, Song Z, Li X, et al.Electronic confinement and coherence in patterned epitaxial graphene.Science, 2006, 312:1191-1196
[100]  28 Emtsev K V, Speck F, Seyller T, et al.Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces:A comparative photoelectron spectroscopy study.Phys Rev B, 2008, 77:155303
[101]  29 Yang X, Dou X, Rouhanipour A, et al.Two-dimensional graphene nanoribbons.J Am Chem Soc, 2008, 130:4216-4217
[102]  30 Carissan Y, Klopper W.Growing graphene sheets from reactions with methyl radicals:A quantum chemical study.Chem Phys Chem, 2006, 7:1770-1778
[103]  31 Qian H, Negri F, Wang C, et al.Fully conjugated tri(perylene bisimides):An approach to the construction of n-type graphene nanoribbons.J Am Chem Soc, 2008, 130:17970-17976
[104]  32 Wang Z Y, Li N, Shi Z S, et al.Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air.Nanotechnology, 2010, 21:175602
[105]  33 Li N, Wang Z Y, Zhao K K, et al.Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method.Carbon, 2010, 48:255-259
[106]  34 Hirsch A.Unzipping carbon nanotubes:A peeling method for the formation of graphene nanoribbons.Angew Chem Int Ed, 2009, 48:6594-6596

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133