全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

超临界二氧化碳协助制备多组分复合材料及在超级电容器方面的应用

DOI: 10.1360/N972015-00316, PP. 2573-2578

Keywords: 石墨烯凝胶,聚苯胺,碳纳米管,超临界二氧化碳,超级电容器

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用绿色水热方法合成石墨烯/吡咯气凝胶(G-Py),原位聚合的方法制备碳纳米管/聚苯胺复合材料(CNT/PANI),而后通过超临界二氧化碳的协助制备了一系列G-Py和CNT/PANI的复合材料,并通过红外光谱(FTIR)、X射线衍射(XRD)和Raman光谱研究其结构变化,电化学工作站测试其电性能,从而探究超临界二氧化碳对其结构和性能的影响.研究结果表明,经过超临界二氧化碳协助一步法得到的复合材料具有最优的电性能.电化学测试表明其比电容高达373F/g,是未经超临界二氧化碳处理制备的复合材料的1.4倍,说明超临界二氧化碳辅助制备是构筑多组分复合材料的一种有效方法.

References

[1]  3 Ye S B, Feng J C.Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors.ACS Appl Mater Interfaces, 2014, 6:9671-9679
[2]  4 Yan Z, Ma L L, Zhu Y, et al.Three-dimensional metal-graphene-nanotube multifunctional hybrid materials.ACS Nano, 2013, 7:58-64
[3]  5 Chen J F, Lang Z L, Xu Q, et al.A novel method to fabricate discrete porous carbon hemispheres and their electrochemical properties as supercapacitors.Phys Chem Chem Phys, 2013, 15:17786-17792
[4]  6 Xu G H, Wang N, Wei J Y, et al.Preparation of graphene oxide/polyaniline nanocomposite with assistance of supercritical carbon dioxide for supercapacitor electrodes.Ind Eng Chem Res, 2012, 51:14390-14398
[5]  7 Ren Y M, Zhang J M, Xu Q, et al.Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes.RSC Adv, 2014, 4:23412-23419
[6]  8 Lang J W, Kong L B, Wu W J, et al.Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors.Chem Commun, 2008, 4213-4215
[7]  9 Fan H S, Wang H, Zhao N, et al.Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode.J Mater Chem, 2012, 22:2774-2780
[8]  10 Liu M K, Miao Y E, Zhang C, et al.Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.Nanoscale, 2013, 5:7312-7320
[9]  11 Gregorowicz J, Wawrzynska E P, Parzuchowski P G, et al.Synthesis, characterization, and solubility in supercritical carbon dioxide of hyperbranched copolyesters.Macromolecules, 2013, 46:7180-7195
[10]  12 Gong J L, Zhang A J, Bai H, et al.Formation of nanoscale networks:Selectively swelling amphiphilic block copolymers with CO2-expanded liquids.Nanoscale, 2013, 5:1195-1204
[11]  13 Yu N, Zheng X L, Xu Q, et al.Controllable-Induced crystallization of PE-b-PEO on carbon nanotubes with assistance of supercritical CO2:Effect of solvent.Macromolecules, 2011, 44:3958-3965
[12]  14 Ye X R, Lin Y, Wai C M.Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide.Chem Commun, 2003, 34:642-643
[13]  15 Xu G H, Xu Q, Qin A J, et al.Immobilization of polymeric fluorogen on PDVB nanotube with assistance of supercritical CO2 for functional films.J Mater Chem C, 2013, 1:1717-1721
[14]  16 Sun G N, Chen Z M, Wang S S, et al.Preparation of hollow silica microspheres with controlled shell thickness in supercritical fluids.Colloid Polym Sci, 2011, 289:1397-1406
[15]  17 Yang H X, Wang N, Xu Q, et al.Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications.2D Mater, 2014, 1:034002
[16]  18 Yang H X, Wang N, Ren Y M, et al.Supercritical CO2-assisted preparation of 3D graphene-pyrrole/carbon nanotubes/polyaniline nanoarchitectures for efficient supercapacitor electrodes.Mater Lett, 2015, 139:471-474
[17]  19 Yan X B, Chen J T, Yang J, et al.Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers.ACS Appl Mater Interfaces, 2010, 2:2521-2529
[18]  20 Park S, Lee K S, Bozoklu G, et al.Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.ACS Nano, 2008, 2:572-578
[19]  21 Si Y C, Samulski E T.Synthesis of water soluble graphene.Nano Lett, 2008, 8:1679-1686
[20]  22 Li J H, An J W, Zhou Y C, et al.Preparation of an amide group-connected graphene-polyaniline nanofiber hybrid and its application in supercapacitors.ACS Appl Mater Interfaces, 2012, 4:2870-2876
[21]  23 Gui D Y, Liu C L, Chen F Y, et al.Preparation of polyaniline/graphene oxide nanocomposite for the application of supercapacitor.Appl Surf Sci, 2014, 307:172-177
[22]  24 Wei J Y, Zhang J N, Liu Y, et al.Controlled growth of whisker-like polyaniline on carbon nanofibers and their long cycle life for supercapacitors.RSC Adv, 2013, 3:3957-3962
[23]  25 Xia X F, Hao Q L, Lei W, et al.Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors.J Mater Chem, 2012, 22:16844-16850
[24]  26 Lu X J, Dou H, Yang S D, et al.Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film.Electrochim Acta, 2011, 56:9224-9232
[25]  27 Xu J J, Wang K, Zu S Z, et al.Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage.ACS Nano, 2010, 4:5019-5026
[26]  28 Jin Y H, Fang M, Jia M Q.In situ one-pot synthesis of grapheme-polyaniline nanofiber composite for high-performance electrochemical capacitors.Appl Surf Sci, 2014, 308:333-340
[27]  29 Shao L, Jeon J W, Lutkenhaus J L.Polyaniline networks grown on graphene nanoribbon scoated carbon paper with a synergistic effect for high performance microbial fuel cells.J Mater Chem A, 2013, 1:7648-7656
[28]  30 Wang L, Ye Y J, Lu X P, et al.Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors.Sci Rep, 2013, 3:3568
[29]  1 Niu Z Q, Chen J, Hng H H, et al.A leavening strategy to prepare reduced graphene oxide foams.Adv Mater, 2012, 24:4144-4150
[30]  2 Zhao Y, Hu C G, Hu Y, et al.A versatile, ultralight, nitrogen-doped graphene framework.Angew Chem, 2012, 124:11533-11537

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133