1 Granqvist C G. Solar energy materials. Adv Mater, 2003, 15: 1789-1803
[2]
2 Granqvist C G, Lans?ker P C, Mlyuka N R, et al. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices. Sol Energy Mater Sol Cells, 2009, 93: 2032-2039
[3]
56 Burkhardt W, Christmann T, Franke S, et al. Tungsten and fluorine co-doping of VO2 films. Thin Solid Films, 2002, 402: 226-231
[4]
57 Kiri P, Warwick M E A, Ridley I, et al. Fluorine doped vanadium dioxide thin films for smart windows. Thin Solid Films, 2011, 520: 1363-1366
[5]
58 Hanlon T J, Coath J A, Richardson M A. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method. Thin Solid Films, 2003, 436: 269-272
[6]
59 Qazilbash M M, Brehm M, Andreev G O, et al. Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide. Phys Rev B, 2009, 79: 075107
[7]
60 Burkhardt W, Christmann T, Meyer B K, et al. W- and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films, 1999, 345: 229-235
[8]
61 Dai L, Chen S, Liu J J, et al. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Phys Chem Chem Phys, 2013, 15: 11723-11729
[9]
62 Mlyuka N R, Niklasson G A, Granqvist C G. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature. Appl Phys Lett, 2009, 95: 171909
[10]
63 Zhou J, Gao Y, Liu X, et al. Mg-doped VO2 nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Phys Chem Chem Phys, 2013, 15: 7505-7511
[11]
64 Chen S, Dai L, Liu J J, et al. The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: An optimization and first principle study. Phys Chem Chem Phys, 2013, 15: 17537-17543
[12]
65 Shen N, Chen S, Chen Z, et al. The synthesis and performance of Zr-doped and W-Zr-codoped VO2 nanoparticles and derived flexible foils. J Mater Chem A, 2014, 2: 15087-15093
[13]
66 Sun C, Yan L M, Yue B H, et al. The modulation of metal-insulator transition temperature of vanadium dioxide: A density functional theory study. J Mater Chem C, 2014, 2: 9283-9293
[14]
67 Ren Q H, Wan J Y, Gao Y F. Theoretical study of electronic properties of X-doped (X=F, Cl, Br, I) VO2 nanoparticles for thermochromic energy-saving foils. J Phys Chem A, 2014, 118: 11114-11118
[15]
68 Zhang J J, He H Y, Xie Y, et al. Giant reduction of the phase transition temperature for beryllium doped VO2. Phys Chem Chem Phys, 2013, 15: 4687-4690
[16]
69 Chen R, Miao L, Cheng H L, et al. One-step hydrothermal synthesis of V1-xWxO2 (M/R) nanorods with superior doping efficiency and thermochromic properties. J Mater Chem A, 2015, 3: 3726-3738
[17]
3 Gao Y, Luo H, Zhang Z, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing. Nano Energy, 2012, 1: 221-246
[18]
4 Zhou Y, Cai Y F, Hu X, et al. VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. J Mater Chem, 2015, 3: 1121-1126
[19]
5 Watanabe H. Intelligent window using a hydrogel layer for energy efficiency. Sol Energy Mater Sol Cells, 1998, 54: 203-211
[20]
6 Théobald F. Hydrothermalstudy of VO2-VO2.5-H2O system. J Less Common Metals, 1977, 53: 55-71
[21]
7 Morin F J. Oxides which show a metal to insulator transition at the neel temperature. Phys Rev Lett, 1959, 3: 34-36
[22]
8 Babulanam S M, Eriksson T S, Niklasson G A, et al. Thermochromic VO2 films for energy-efficient windows. Sol Energy Mater, 1987, 16: 347-363
[23]
9 Kim D H, Kwok H S. Pulsed-laser deposition of VO2 thin-films. Appl Phys Lett, 1994, 65: 3188-3190
[24]
10 Mathevula L, Ngom B D, Kotsedi L, et al. Thermochromic VO2 on zinnwaldite mica by pulsed laser deposition. Appl Surf Sci, 2014, 314: 476-480
[25]
11 Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation. Phys Status Solid A, 2009, 206: 2155-2160
[26]
12 Jin P, Tanemura S. Formation and thermochromism of VO2 films deposited by Rf magnetron sputtering at low substrate-temperature. Jpn J Appl Phys, 1994, 33: 1478-1483
[27]
13 Qi J, Ning G L, Lin Y. Synthesis, characterization, and thermodynamic parameters of vanadium dioxide. Mater Res Bull, 2008, 43: 2300-2307
[28]
14 Zheng C M, Zhang J L, Luo G B, et al. Preparation of vanadium dioxide powders by thermolysis of a precursor at low temperature. J Mater Sci, 2000, 35: 3425-3429
[29]
15 Peng Z F, Jiang W, Liu H. Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis. J Phys Chem C, 2007, 111: 1119-1122
[30]
16 Rama N, Rao M S R. Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique. Solid State Commun, 2010, 150: 1041-1044
[31]
17 Nag J, Haglund R F. Synthesis of vanadium dioxide thin films and nanoparticles. J Phys Condens Matter, 2008, 20: 1-14
[32]
18 Gui Z, Fan R, Chen X H, et al. A new metastable phase of needle-like nanocrystalline VO2·H2O and phase transformation. J Solid State Chem, 2001, 157: 250-254
[33]
19 Cao C X, Gao Y F, Luo H J. Pure single-crystal rutile vanadium dioxide powders: Synthesis, mechanism and phase-transformation property. J Phys Chem C, 2008, 112: 18810-18814
[34]
20 Ji S D, Zhao Y, Zhang F, et al. Direct formation of single crystal VO2 (R) nanorods by one-step hydrothermal treatment. J Cryst Growth, 2010, 312: 282-286
[35]
21 Son J H, Wei J, Cobden D, et al. Hydrothermal synthesis of monoclinic VO2 micro- and nanocrystals in one step and their use in fabricating inverse opals. Chem Mater, 2010, 22: 3043-3050
[36]
22 Dai L, Cao C, Gao Y, et al. Synthesis and phase transition behavior of undoped VO2 with a strong nano-size effect. Sol. Energy Mater Sol Cells, 2011, 95: 712-715
[37]
23 Chen S H, Ma H, Dai J, et al. Nanostructured vanadium dioxide thin films with low phase transition temperature. Appl Phys Lett, 2007, 90: 101117
[38]
24 Gao Y F, Cao C X, Dai L, et al. Phase and shape controlled VO2 nanostructures by antimony doping. Energy Environ Sci, 2012, 5: 8708-8715
[39]
25 Chen Z, Gao Y, Kang L T, et al. Fine crystalline VO2 nanoparticles: Synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. J Mater Chem A, 2014, 2: 2718-2727
[40]
26 Li S Y, Niklasson G A, Granqvist C G. Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J Appl Phys, 2010, 108: 063525
[41]
27 Li S Y, Niklasson G A, Granqvist C G. Nanothermochromics with VO2-based core-shell structures: Calculated luminous and solar optical properties. J Appl Phys, 2011, 109: 113515
[42]
28 Lv W Z, Huang D Z, Chen Y M, et al. Synthesis and characterization of Mo-W co-doped VO2 (R) nano-powders by the microwave-assisted hydrothermal method. Ceram Int, 2014, 40: 12661-12668
[43]
29 Wu C Z, Zhang X D, Dai J, et al. Direct hydrothermal synthesis of monoclinic VO2 (M) single-domain nanorods on large scale displaying magnetocaloric effect. J Mater Chem, 2011, 21: 4509-4517
[44]
30 Whittaker L, Velazquez J M, Banerjee S. A VO-seeded approach for the growth of star-shaped VO2 and V2O5 nanocrystals: Facile synthesis, structural characterization, and elucidation of electronic structure. Cryst Eng Commun, 2011, 13: 5328-5336
[45]
31 Zhang Z T, Gao Y F, Kang L T, et al. Effects of a TiO2 buffer layer on solution-deposited VO2 films: Enhanced oxidization durability. J Phys Chem C, 2010, 114: 22214-22220
[46]
32 Li D B, Li M, Pan J, et al. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance. ACS Appl Mater Interfaces, 2014, 6: 6555-6561
[47]
33 Wu C Z, Feng F, Feng J, et al. Ultrafast solid-state transformation pathway from new-phased goethite VOOH to paramontroseite VO2 to rutile VO2 (R). J Phys Chem C, 2011, 115: 791-799
[48]
34 Zou J, Peng Y G, Lin H. A low-temperature synthesis of monoclinic VO2 in an atmosphere of air. J Mater Chem A, 2013, 1: 4250-4254
[49]
35 Zhou Y, Ji S D, Li Y M, et al. Microemulsion-based synthesis of V1-xWxO2@SiO2 core-shell structures for smart window applications. J Mater Chem C, 2014, 2: 3812-3819
[50]
36 Wu C Z, Dai J, Zhang X D, et al. Direct confined-space combustion forming monoclinic vanadium dioxides. Angew Chem Int Ed, 2010, 49: 134-137
[51]
37 Jiang B J, Peng X X, Qu Y, et al. A new combustion route to synthesize mixed valence vanadium oxide heterojunction composites as visible-light-driven photocatalysts. ChemCatChem, 2014, 6: 2553-2559
[52]
38 Chen J K, Liu X L, Dai L, et al. Deoxidization of V2O5 powder into VO2 assisted by an electrochemical lithium intercalation technique. Int J Appl Ceram Technol, 2012, 9: 942-946
[53]
39 Yao T, Liu L, Xiao C, et al. Ultrathin nanosheets of half-metallic monoclinic vanadium dioxide with a thermally induced phase transition. Angew Chem Int Ed, 2013, 52: 7554-7558
[54]
40 Du J, Gao Y F, Luo H J, et al. Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition. Sol Energy Mater Sol Cells, 2010, 95: 469-475
[55]
41 Du J, Gao Y F, Luo H J, et al. Formation and metal-to-insulator transition properties of VO2-ZrV2O7 composite films by polymer-assisted deposition. Sol Energy Mater Sol Cells, 2011, 95: 1604-1609
[56]
42 Kang L, Gao Y, Luo H, et al. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl Mater Interfaces, 2011, 3: 135-138
[57]
43 Gao Y, Wang S, Kang L, et al. VO2-Sb:SnO2 composite thermochromic smart glass foil. Energy Environ Sci, 2012, 5: 8234-8237
[58]
44 Gao Y F, Wang S B, Luo H J, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core-shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control. Energy Environ Sci, 2012, 5: 9947-9947
[59]
45 Zhou J, Gao Y, Liu X, et al. Mg-doped VO2 nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Phys Chem Chem Phys, 2013, 15: 7505-7511
[60]
46 Wang H W, Yi H, Chen X, et al. One-step strategy to three-dimensional graphene/VO2 nanobelt composite hydrogels for high performance supercapacitors. J Mater Chem A, 2014, 2: 1165-1173
[61]
47 Li S T, Li Y M, Qian K, et al. Functional fber mats with tunable diffuse reflectance composed of electrospun VO2/PVP composite fibers. ACS Appl Mater Interfaces, 2014, 6: 9-13
[62]
48 Zhou Y, Huang A, Li Y, et al. Surface plasmon resonance induced excellent solar control for VO2@SiO2 nanorods-based thermochromic foils. Nanoscale, 2013, 5: 9208-9213
[63]
49 Li Y M, Ji S D, Gao Y F, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Sci Rep, 2013, 3: 1370
[64]
50 Liu C, Cao X, Kamyshny A, et al. VO2/Si-Al gel nanocomposite thermochromic smart foils: Largely enhanced luminous transmittance and solar modulation. J Colloid Interface Sci, 2014, 427: 49-53
[65]
51 Chen Z, Cao C X, Chen S, et al. Crystallised mesoporous TiO2(A)-VO2(M/R) nanocomposite films with self-cleaning and excellent thermochromic properties. J Mater Chem A, 2014, 2: 11874-11884
[66]
52 Kim H, Kim Y, Kim K S, et al. Flexible thermochromic window based on hybridized VO2/graphene. ACS Nano, 2013, 7: 5769-5776
[67]
53 Kim H, Kim Y, Kim T, et al. Enhanced optical response of hybridized VO2/graphene films. Nanoscale, 2013, 5: 2632-2636
[68]
54 Goodenough J B. The two components of the crystallographic transition in VO2. J Solid State Chem, 1971, 3: 490-500
[69]
55 Vernardou D, Pemble M E, Sheel D W. Tungsten-doped vanadium oxides prepared by direct liquid injection MOCVD. Chem Vapor Depos, 2007, 13: 158-162