全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

肿瘤基因组学与全球肿瘤基因组计划

DOI: 10.1360/N972014-01253, PP. 792-804

Keywords: 肿瘤基因组,国际肿瘤基因组,协作联盟,中国肿瘤基因组,协作组,测序,突变

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA序列的变异是所有肿瘤细胞发生的重要的分子层面的原因,当前学界已经有能力对一定规模的癌症队列样本开展全基因组变异图谱的分析.国际肿瘤基因组协作联盟(ICGC)于2007年成立并启动了全球范围的肿瘤基因组研究工作.ICGC提出对50种癌症、总计25000例患者样本绘制体细胞基因突变谱.多个国家的参与课题组已经阶段性地总结了特定癌症的数据并报道了研究成果,当前跨癌种的泛癌症基因组研究已经成为ICGC的工作重点.我国以中国肿瘤基因组协作组(CCGC)的形式参与了ICGC的合作研究,选择包括食管癌、胃癌、肝癌、大肠癌、鼻咽癌等13种癌症并取得相关进展.CCGC和ICGC研究工作将积极推动癌症基因组学向肿瘤生物学的转化研究,为肿瘤的个体化精准诊疗提供理论和技术支撑.

References

[1]  1 Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci, 2008, 121(Suppl 1): 1–84
[2]  2 Rowley J D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973, 243: 290–293
[3]  3 Tabin C J, Bradley S M, Bargmann C I, et al. Mechanism of activation of a human oncogene. Nature 1982, 300: 143–149
[4]  4 Reddy E P, Reynolds R K, Santos E, et al. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature, 1982, 300: 149–152
[5]  5 Hanahan D, Weinberg R A. The hallmarks of cancer. Cell, 2000, 100: 57–70
[6]  6 Hanahan D, Weinberg R A. Hallmarks of cancer: The next generation. Cell, 2011, 144: 646–674
[7]  14 Rubin A F, Green P. Mutation patterns in cancer genomes. Proc Natl Acad Sci USA, 2009, 106: 21766–21770
[8]  15 Rodrigue S, Malmstrom R R, Berlin A M, et al. Whole genome amplification and de novo assembly of single bacterial cells. PLoS One, 2009, 4: e6864
[9]  16 Druley T E, Vallania F L, Wegner D J, et al. Quantification of rare allelic variants from pooled genomic DNA. Nat Methods, 2009, 6: 263–265
[10]  17 Albert T J, Molla M N, Muzny D M, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods, 2007, 4: 903–905
[11]  18 Gnirke A, Melnikov A, Maguire J, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol, 2009, 27: 182–189
[12]  19 Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet, 2007, 39: 1522–1527
[13]  20 Turner E H, Lee C, Ng S B, et al. Massively parallel exon capture and library-free resequencing across 16 genomes. Nat Methods, 2009, 6: 315–316
[14]  21 Levin J Z, Berger M F, Adiconis X, et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol, 2009, 10: R115
[15]  22 Palanisamy N, Ateeq B, Kalyana-Sundaram S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med, 2010, 16: 793–798
[16]  23 Shah S P, Kobel M, Senz J, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med, 2009, 360: 2719–2729
[17]  24 Paz N, Levanon E Y, Amariglio N, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res, 2007, 17: 1586–1595
[18]  43 Guo G, Sun X, Chen C, et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet, 2013, 45: 1459–1463
[19]  44 Wu S, Lv Z, Zhu J, et al. Somatic mutation of the androgen receptor gene is not associated with transitional cell carcinoma: A “negative” study by whole-exome sequencing analysis. Eur Urol, 2013, 64: 1018–1019
[20]  45 Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature, 2014, 509: 91–95
[21]  46 Gao Y B, Chen Z L, Li J G, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet, 2014, 46: 1097–1102
[22]  47 Lin D C, Hao J J, Nagata Y, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet, 2014, 46: 467–473
[23]  48 Huang J, Deng Q, Wang Q, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet, 2012, 44: 1117–1121
[24]  49 Li M, Zhao H, Zhang X, et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet, 2011, 43: 828–829
[25]  50 Sung W K, Zheng H, Li S, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet, 2012, 44: 765–769
[26]  51 Kan Z, Zheng H, Liu X, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res, 2013, 23: 1422–1433
[27]  52 Tao Y, Ruan J, Yeh S H, et al. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc Natl Acad Sci USA, 2011, 108: 12042–12047
[28]  53 Hou J, Lin L, Zhou W, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell, 2011, 19: 232–243
[29]  7 Dulbecco R. A turning point in cancer research: Sequencing the human genome. Science, 1986, 231: 1055–1056
[30]  8 Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860–921
[31]  9 Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291: 1304–1351
[32]  10 International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431: 931–945
[33]  11 Garraway L A, Lander E S. Lessons from the cancer genome. Cell, 2013, 153: 17–37
[34]  12 Schweiger M R, Kerick M, Timmermann B, et al. Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One, 2009, 4: e5548
[35]  13 Pinard R, De Winter A, Sarkis G J, et al. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics, 2006, 7: 216
[36]  25 International Cancer Genome C. International network of cancer genome projects. Nature, 2010, 464: 993–998
[37]  26 Toronto International Data Release Workshop A. Prepublication data sharing. Nature, 2009, 461: 168–170
[38]  27 Haider S, Ballester B, Smedley D, et al. BioMart Central Portal—unified access to biological data. Nucleic Acids Res, 2009, 37: W23–W27
[39]  28 Nik-Zainal S, Alexandrov L B, Wedge D C, et al. Mutational processes molding the genomes of 21 breast cancers. Cell, 2012, 149: 979–993
[40]  29 Nik-Zainal S, van Loo P, Wedge D C, et al. The life history of 21 breast cancers. Cell, 2012, 149: 994–1007
[41]  30 Papaemmanuil E, Cazzola M, Boultwood J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med, 2011, 365: 1384–1395
[42]  31 Malcovati L, Papaemmanuil E, Bowen D T, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood, 2011, 118: 6239–6246
[43]  32 Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood, 2013, 122: 3616–3627, quiz 3699
[44]  33 India Project Team of the International Cancer Genome C. Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat Commun, 2013, 4: 2873
[45]  34 Jones D T, Hutter B, Jager N, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet, 2013, 45: 927–932
[46]  35 Tirode F, Surdez D, Ma X, et al. Genomic landscape of ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov, 2014, 4: 1342–1353
[47]  36 Dove E S, Joly Y, Tasse A M, et al. Genomic cloud computing: Legal and ethical points to consider. Eur J Hum Genet, 2014, doi: 10.1038/ejhg.2014.196
[48]  37 Gonzalez-Perez A, Mustonen V, Reva B, et al. Computational approaches to identify functional genetic variants in cancer genomes. Nat Methods, 2013, 10: 723–729
[49]  38 Wong C C, Martincorena I, Rust A G, et al. Inactivating CUX1 mutations promote tumorigenesis. Nat Genet, 2014, 46: 33–38
[50]  39 Yan X J, Xu J, Gu Z H, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet, 2011, 43: 309–315
[51]  40 Cao Y, Gao Z, Li L, et al. Whole exome sequencing of insulinoma reveals recurrent T372R mutations in YY1. Nat Commun, 2013, 4: 2810
[52]  41 Cao Y, He M, Gao Z, et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome. Science, 2014, 344: 913–917
[53]  42 Gui Y, Guo G, Huang Y, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet, 2011, 43: 875–878

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133