1 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050-6051
[2]
2 Zhou H, Chen Q, Li G, et al. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345: 542-546
[3]
3 Kamat P V. Organometal halide perovskites for transformative photovoltaics. J Am Chem Soc, 2014, 136: 3713-3714
[4]
4 Gao P, Gr?tzel M, Nazeeruddin M K. Organohalide lead perovskites for photovoltaic applications. Energ Environ Sci, 2014, 7: 2448-2463
[5]
11 Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345: 295-298
[6]
12 Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3: 4088-4093
[7]
13 Boix P P, Nonomura K, Mathews N, et al. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today, 2014, 17: 16-23
[8]
14 Umari P, Mosconi E, De Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Rep, 2014, 4: 4467-4473
[9]
15 Even J, Pedesseau L, Jancu J M, et al. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J Phys Chem Lett, 2013, 4: 2999-3005
[10]
16 Brivio F, Walker A B, Walsh A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater, 2013, 1: 042111-042115
[11]
17 Feng J, Xiao B. Crystal structures, optical Properties, and effective mass tensors of CH3NH3PbX3(X = I and Br) phases predicted from HSE06. J Phys Chem Lett, 2014, 5: 1278-1282
[12]
18 Borriello I, Cantele G, Ninno D. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys Rev B, 2008, 77: 235214-235222
[13]
19 Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1: 5628-5641
[14]
20 Mosconi E, Amat A, Nazeeruddin M K, et al. First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J Phy Chem C, 2013, 117: 13902-13913
[15]
26 Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32: 510-519
[16]
27 Ogomi Y, Morita A, Tsukamoto S, et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett, 2014, 5: 1004-1011.
[17]
28 Hao F, Stoumpos C C, Chang R P, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc, 2014, 136: 8094-8099
[18]
29 Hao F, Stoumpos C C, Cao D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics, 2014, 8: 489-494
[19]
30 Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501: 395-398
[20]
41 Christians J A, Fung R C, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc, 2014, 136: 758-764
[21]
42 Qin P, Tanaka S, Ito S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Commun, 2014, 5: 3834-3839
[22]
43 Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012, 134: 17396-17399
[23]
44 Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energ Environ Sci, 2013, 6: 3249-3253
[24]
45 Shi J, Dong J, Lv S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Appl Phys Lett, 2014, 104: 063901-063904
[25]
46 Marchioro A, Teuscher J, Friedrich D, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 2014, 8: 250-255
[26]
47 Liu F, Zhu J, Wei J, et al. Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. Appl Phys Lett, 2014, 104: 253508-253512
[27]
62 Tanaka K, Takahashi T, Ban T, et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun, 2003, 127: 619-623
[28]
63 Ishhara T. Optical properties of PbI-based perovskite structures. J Lumin, 1994, 60-61: 269-274
[29]
64 Even J, Pedesseau L, Katan C. Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications. Proc SPIE, 2014, 9140: 91400Y
[30]
23 Frost J M, Butler K T, Brivio F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett, 2014, 14: 2584-2590
[31]
24 Mitzi D B, Wang S, Field C A, et al. Conducting layered organic-inorganic halides containing (1 1 0)-oriented perovskite sheets. Science, 1995, 267: 1473-1476 25 Lang L, Yang J H, Liu H R, et al. First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys Lett A, 2014, 378: 290-293
[32]
31 Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342: 344-347
[33]
32 Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342: 341-344
[34]
33 Gratzel M. The light and shade of perovskite solar cells. Nat Mater, 2014, 13: 838-842
[35]
34 Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett, 2013, 13: 1764-1769
[36]
35 Ryu S, Noh J H, Jeon N J, et al. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ Sci, 2014, 7: 2614-2618
[37]
36 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591-597
[38]
37 Heo J H, Im S H, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7: 486-491
[39]
38 Krishnamoorthy T, Kunwu F, Boix P P, et al. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J Mater Chem A, 2014, 2: 6305-6309
[40]
39 Bi D, Yang L, Boschloo G, et al. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett, 2013, 4: 1532-1536
[41]
40 Aharon S, Gamliel S, Cohen B E, et al. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys, 2014, 16: 10512-10518
[42]
48 Chang Y H, Park C H, Matsuishi K. First-principles study of the structural and the electronic properties of the lead-halide-based inorganic- organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I). J Korean Phys Soc, 2004, 44: 889-893
[43]
49 Chiarella F, Zappettini A, Licci F, et al. Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X=Cl,Br). Phys Rev B, 2008, 77: 045129-045134
[44]
50 Lindblad R, Bi D, Park B-W, et al. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J Phys Chem Lett, 2014, 5: 648-653
[45]
51 Kim J, Lee S-H, Lee J H, et al. The role of intrinsic defects in methylammonium lead iodide perovskite. J Phys Chem Lett, 2014, 5: 1312-1317
[46]
52 Yin W-J, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104: 063903-063907
[47]
53 Miller J L. Unusual defect physics underlies perovskite solar cells' exceptional performance. Phys Today, 2014, 67: 13-15
[48]
54 Wang Y, Gould T, Dobson J F, et al. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. Phys Chem Chem Phys, 2014, 16: 1424-1429
[49]
55 Geng W, Zhang L, Zhang Y-N, et al. First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J Phys Chem C, 2014, 118: 19565-19571
[50]
56 Brivio F, Butler K T, Walsh A, et al. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys Rev B, 2014, 89: 155204-155209
[51]
57 Umebayashi T, Asai K, Kondo T, et al. Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B, 2003, 67: 155405-155410
[52]
58 Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118: 8207-8215
[53]
59 Feng J, Xiao B. Effective masses and electronic and optical properties of nontoxic MASnX3(X = Cl, Br, and I) perovskite structures as solar cell absorber: A theoretical study using HSE06. J Phys Chem C, 2014, 118: 19655-19660
[54]
60 Du M H. Efficient carrier transport in halide perovskites: Theoretical perspectives. J Mater Chem A, 2014, 2: 9091-9098
[55]
61 Qiu J, Qiu Y, Yan K, et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 2013, 5: 3245-3248
[56]
65 Tang L C, Chang C S, Huang J Y. Electronic structure and optical properties of rhombohedral CsGeI3 crystal. J Phys: Condens Matter, 2000, 12: 9129-9143
[57]
66 Schwarz U, Wagner F, Syassen K, et al. Effect of pressure on the optical-absorption edges of CsGeBr3 and CsGeCl3. Phys Rev B, 1996, 53: 12545-12548
[58]
5 Kawamura Y, Mashiyama H, Hasebe K. Structural study on cubic-tetragonal transition of CH3NH3PbI3. J Phys Soc Jpn, 2002, 71: 1694-1697
[59]
6 Poglitsch A, Weber D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys, 1987, 87: 6373-6378
[60]
7 Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52: 9019-9038
[61]
8 Amat A, Mosconi E, Ronca E, et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett, 2014, 14: 3608-3616
[62]
9 Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338: 643-647 10 Bi D, Moon S J, H?ggman L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv, 2013, 3: 18762-18766
[63]
21 Giorgi G, Fujisawa J I, Segawa H, et al. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis. J Phys Chem Lett, 2013, 4: 4213-4216
[64]
22 Wasylishen R E, Knop O, Macdonald J B. Cation rotation in methylammonium lead halides. Solid State Commun, 1985, 56: 581-582