全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

面向大社交数据的深度分析与挖掘

DOI: 10.1360/N972014-00954, PP. 509-519

Keywords: 社交网络,社会影响力,社区发现,社交行为预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

社交网络在线化是大数据时代的典型特点,也是大数据产生的重要原因之一.本文从大数据的特点着手,结合互联网络尤其是在线社交网络的发展趋势,介绍大数据在提升国家信息产业科学化水平、引领新型互联网经济发展、推动社会学与信息科学交叉发展等方面带来的重大机遇;分析在线社会网络中存在的关键问题,阐述网络大数据研究在语义理解与分析、多模态关联与融合、群体行为分析与挖掘、多维分析与可视化、系统的研发与集成等方面面临的巨大技术挑战,以及当前国内外在大数据分析和在线社交网络领域的主要研究工作;总结和展望网络大数据研究的未来方向和前景.

References

[1]  1 Erd?s P, Rényi A. On random graphs. Publ Math, 1959, 6: 290-297
[2]  2 Watts D J, Strogatz S H. Collective dynamics of ‘small-world' networks. Nature, 1998, 393: 440-442
[3]  3 Barabási A L. Emergence of scaling in random networks. Science, 1999, 286: 509-512
[4]  4 Leskovec J, Adamic L, Huberman B. The dynamics of viral marketing. ACM Trans Web, 2007, 1: 5
[5]  5 Liben-Nowell D, Kleinberg J. The link prediction problem for social networks. J Am Soc Inf Sci Technol, 2007, 58: 1019-1031
[6]  6 Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'03), 2003. 137-146
[7]  7 Fowler J H, Christakis N A. Dynamic spread of happiness in a large social network: Longitudinal analysis over 20 years in the framingham heart study. British Med J, 2008, 337: a2338
[8]  21 Zhang H, Zhuang Y, Wu F. Cross-modal correlation learning for clustering on image-audio dataset. In: Proceedings of the 15th International Conference on Multimedia (ACM MM'07), 2007. 273-276
[9]  22 Rasiwasia N, Costa Pereira J, Coviello E, et al. A new approach to cross-modal multimedia retrieval. In: Proceedings of the 18th International Conference on Multimedia (ACM MM'10), 2010. 251-260
[10]  23 Yang Y, Zhuang Y, Wang W. Heterogeneous multimedia data semantics mining using content and location context. In: Proceedings of the 16th International Conference on Multimedia (ACM MM'08), 2008. 655-658
[11]  24 Zhuang Y, Yang Y, Wu F. Mining semantic correlation of heterogeneous multimedia data for cross-media retrieval. IEEE Trans Multim, 2008, 10: 221-229
[12]  25 Yang Y, Xu D, Nie F, et al. Ranking with local regression and global alignment for cross media retrieval. In: Proceedings of the 17th International Conference on Multimedia (ACM MM'09), 2009. 175-184
[13]  26 Jia Y, Salzmann M, Darrell T. Learning cross-modality similarity for multinomial data. In: Proceedings of 2011 IEEE International Conference on Computer Vision (ICCV'11), 2011. 2407-2414
[14]  27 Lazarsfeld P F, Berelson B, Gaudet H. The People's Choice: How the Voter Makes up His Mind in a Presidential Campaign. New York: Columbia University Press, 1948
[15]  28 Granovetter M. The strength of weak ties. Am J Sociol, 1973, 78: 1360-1380
[16]  8 Tang J, Sun J, Wang C, et al. Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'09), 2009. 807-816
[17]  9 Sun J, Tang J. A survey of models and algorithms for social influence analysis. In: Social Network Data Analytics. Berlin: Springer, 2011. 177-214
[18]  10 Tang J, Lou T, Kleinberg J. Inferring social ties across heterogeneous networks. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining (WSDM'12), 2012. 743-752
[19]  11 Weber C A, Current J R, Benton W C. Vendor selection criteria and methods. Eur J Oper Res, 1991, 50: 2-18
[20]  12 Tan C, Tang J, Sun J, et al. Social action tracking via noise tolerant time-varying factor graphs. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'10), 2010. 1049-1058
[21]  13 Hopcroft J, Kannan R. Computer Science Theory for the Information Age. Berlin: Springer, 2011
[22]  14 Yang J, Yan R, Hauptmann A G. Cross-domain video concept detection using adaptive SVMs. Proceedings of the 15th International Conference on Multimedia (ACM MM'07), 2007. 188-197
[23]  15 Bart E, Porteous I, Perona P, et al. Unsupervised learning of visual taxonomies. In: Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08), 2008
[24]  16 Hinton G, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neur Comp, 2006, 18: 1527-1554
[25]  17 Salakhutdinov R, Hinton G. An efficient learning procedure for deep Boltzmann machines. Neur Comp, 2012, 24: 1967-2006
[26]  18 Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learning Res, 2010, 11: 3371-3408
[27]  19 Dean J, Corrado G S, Monga R, et al. Large scale distributed deep networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS'12), 2012. 1223-1231
[28]  20 Wu F, Zhang H, Zhuang Y. Learning semantic correlations for cross-media retrieval. In: Proceedings of 2006 IEEE International Conference on Image Processing (ICIP'06), 2006. 1465-1468
[29]  29 Krackhardt D. The Strength of Strong Ties: The Importance of Philos in Organizations. Boston: Harvard Business School Press, 1992
[30]  30 Burt R S. Structural Holes: The Social Structure of Competition. Boston: Harvard University Press, 1992
[31]  31 Barabási A L, Bonabeau E. Scale-free networks. Sci Am, 2003, 288: 56-69
[32]  32 Newman M E J, Girvan M. Finding and evaluating community structure in networks. Phys Rev E, 2004, 69: 026113
[33]  33 Palla G, Derényi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435: 814-818
[34]  34 Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA, 2008, 105: 1118-1123
[35]  35 Arenas A, Díaz-Guilera A, Pérez-Vicente C J. Synchronization reveals topological scales in complex networks. Phys Rev Lett, 2006, 96: 114102
[36]  36 Marvela S A, Kleinberg J, Kleinberg R D, et al. Continuous-time model of structural balance. Proc Natl Acad Sci USA, 2011, 108: 1771-1776
[37]  37 Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: Simple building blocks of complex networks. Science, 2002, 298: 824-827
[38]  38 Kleinberg J, Suri S, Tardos E, et al. Strategic network formation with structural holes. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC'08), 2008. 284-293
[39]  39 Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems (CHI'10), 2010. 1361-1370
[40]  40 Adamic L A, Adar E. How to search a social network. Soc Networks, 2005, 27: 187-203
[41]  41 Wang C, Han J, Jia Y, et al. Mining advisor-advisee relationships from research publication networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'10), 2010. 203-212
[42]  42 Zeng J, Zhang S, Wu C. A framework for WWW user activity analysis based on user interest. Knowl Based Syst, 2008, 21: 905-910
[43]  43 Scott J P. Social Network Analysis: A Handbook. 2nd ed. London: Sage Publications Ltd, 2000
[44]  44 Maia M, Almeida J, Almeida V. Identifying user profiles in online social networks. In: Proceedings of the 1st International Workshop on Social Network Systems, 2008
[45]  45 Backstrom L, Kumar R, Marlow C, et al. Preferential behavior in online groups. In: Proceedings of the 2nd ACM International Conference on Web Search and Data Mining (WSDM'08), 2008. 117-128
[46]  46 Tang J, Wu S, Sun J. Confluence: Conformity influence in large social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'13), 2013. 347-355
[47]  47 Moore C, Newman M E J. Epidemics and percolation in small-world networks. Phys Rev E, 2000, 61: 5678-5682
[48]  48 Kuperman M, Abramson G. Small world effect in an epidemiological model. Phys Rev Lett, 2001, 86: 2909-2912
[49]  49 Milgram S. The small world problem. Psychol Today, 1967, 2: 60-67
[50]  50 Christakis N A, Fowler J H. Connected: The Surprising Power of Our Networks and How They Shape Our Lives. New York: Little, Brown and Company, 2009
[51]  51 Zhang J, Tang J, Zhuang H, et al. Role-aware conformity influence modeling and analysis in social networks. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI'14), 2014. 958-965
[52]  52 Yang Y, Tang J, Leung C, et al. RAIN: Social role-aware information diffusion. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI'15), 2015
[53]  53 Wu S, Hofman J M, Mason W A, et al. Who says what to whom on Twitter. In: Proceedings of the 20th International Conference on World Wide Web (WWW'11), 2011. 705-714
[54]  54 Yu L, Asur S, Huberman B. What trends in Chinese social media. In: Proceedings of the 5th Workshop on Social Network Mining and Analysis (SNA-KDD'11), 2011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133