1 Costa F F. Big data in biomedicine. Drug Discov Today, 2014,19: 433-440
[2]
6 Mullis K B, Ferré F, Gibbs R A. The Polymerase Chain Reaction. New York: Birkhauser Boston Inc., 1994
[3]
7 Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc, 1963, 85: 2149-2154
[4]
15 Ruddigkeit L, van Deursen R, Blum L C, et al. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model, 2012, 52: 2864-2875
[5]
16 Ieong P U, S?rensen J, Vemu P L, et al. Progress towards automated kepler scientific workflows for computer-aided drug discovery and molecular simulations. Proc Comput Sci, 2014, 29: 1745-1755
[6]
17 Ge H, Wang Y, Li C, et al. Molecular dynamics-based virtual screening: Accelerating the drug discovery process by high-performance computing. J Chem Inf Model, 2013, 53: 2757-2764
[7]
18 White M J. Chemical patents. In: Currano J, Roth D, eds. Chemical Information for Chemists: A Primer. Cambridge: Royal Society of Chemistry, 2013. 53
[8]
28 Shi L, Campbell G, Jones W D, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol, 2010, 28: 827-838
[9]
29 Xu J. Two-dimensional structure and substructure searching. In: Gasteiger J, ed. Handbook of Chemoinformatics. Weinheim: Wiley-VCH Verlag GmbH, 2008. 868-884
[10]
30 Barnard J M. Substructure searching methods: Old and new. J Chem Inf Comput Sci, 1993, 33: 532-538
[11]
31 Zhang L, Zhang Y, Gu X, et al. Scalable similarity search with topology preserving hashing. IEEE Transact Image Proc, 2014, 23: 3025-3039
[12]
32 Bontcheva K, Tablan V, Cunningham H. Semantic search over documents and ontologies. In: Ferro N, ed. Bridging Between Information Retrieval and Databases. Berlin: Springer-Verlag, 2014. 31-53
[13]
33 Pearson W. BLAST and FASTA similarity searching for multiple sequence alignment. In: Russell D J, ed. Multiple Sequence Alignment Methods. New York: Humana Press, 2014. 75-101
[14]
34 Geyer P. Markush structure searching by information professionals in the chemical industry—Our views and expectations. World Patent Inf, 2013, 35:178-182
[15]
36 Smalter H A, Shan Y, Lushington G, et al. An overview of computational life science databases & exchange formats of relevance to chemical biology research. Comb Chem High Throughput Screen, 2013, 16: 189-198
[16]
37 Herndon W C, Bertz S H. Linear notations and molecular graph similarity. J Comput Chem, 1987, 8: 367-374
[17]
38 Warr W A. Representation of chemical structures. Wiley Interdiscip Rev Comput Mol Sci, 2011, 1: 557-579
[18]
39 Southan C. InChI in the wild: An assessment of InChI Key searching in Google. J Cheminf, 2013, 5: 10
[19]
40 Tenenbaum J B, Langford J C, Silva V D. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290: 2319-2323
[20]
41 Abdi H, Williams L J. Principal component analysis. Wiley Interdiscip Rev Comput Stat, 2010, 2: 433-459
[21]
42 Kruskal J B. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 1964, 29: 115-129
[22]
48 Eckert H, Bajorath J. Molecular similarity analysis in virtual screening: Foundations, limitations and novel approaches. Drug Discov Today, 2007, 12: 225-233
[23]
49 Durrant J D, McCammon J A. Molecular dynamics simulations and drug discovery. BMC Biol, 2011, 9: 71
[24]
50 G?tz A W, Williamson M J, Xu D, et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J Chem Theory Comput, 2012, 8: 1542-1555
[25]
56 Li H, Xie Y, Liu C, et al. Physicochemical bases for protein folding, dynamics, and protein-ligand binding. Sci China Life Sci, 2014, 57: 287-302
[26]
57 Li C, Ge H, Cui L, et al. Molecular mechanism of action of K(D)PT as an IL-1RI antagonist for the treatment of rhinitis. RSC Adv, 2014, 4: 48741-48749
[27]
58 Yan X, Li J, Liu Z, et al. Enhancing molecular shape comparison by weighted Gaussian functions. J Chem Inf Model, 2013, 53: 1967-1978
[28]
65 Ekins S, Freundlich J S, Reynolds R C. Are bigger data sets better for machine learning? Fusing single-point and dual-event dose response data for mycobacterium tuberculosis. J Chem Inf Model, 2014, 54: 2157-2165
[29]
2 Shen B, Teschendorff A E, Zhi D, et al. Biomedical data integration, modeling, and simulation in the era of big data and translational medicine. Biomed Res Int, 2014, 2014: 731546
[30]
3 Martin-Sanchez F, Verspoor K. Big data in medicine is driving big changes. Yearbook Med Informatics, 2014, 9: 14-20
[31]
4 Ndiaye N C. Systems medicine in the era of “big data”: A game-changer for personalized medicine? Drug Metab Drug Interact, 2014, 29: 127
[32]
5 Bartlett J S, Stirling D. A Short history of the polymerase chain reaction. In: Bartlett J S, Stirling D, eds. PCR Protocols. New York: Humana Press, 2003. 3-6
[33]
8 Pereira D A, Williams J A. Origin and evolution of high throughput screening. Br J Pharmacol, 2007, 152: 53-61
[34]
9 Baker M. Big biology: The 'omes puzzle. Nature, 2013, 494: 416-419
[35]
10 Massarotti A, Brunco A, Sorba G, et al. ZINClick: A database of 16 million novel, patentable, and readily synthesizable 1,4-disubstituted triazoles. J Chem Inf Model, 2014, 54: 396-406
12 Giuliano K A, Haskins J R, Taylor D L. Advances in high content screening for drug discovery. Assay Drug Develop Technol, 2003, 1: 565-577
[38]
13 Zhang X, Yang C, Liu F, et al. Optimizing and scaling HPCG on tianhe-2: Early experience. In: Sun X H, Qu W, Stojmenovic I, et al., eds. Algorithms and Architectures for Parallel Processing. 14th International Conference (ICA3PP 2014). Cham, Switzerland: Springer International Publishing, 2014. 28-41
[39]
14 Service RF. Biology's dry future. Science, 2013, 342: 186-189
[40]
19 World Health Organization. International Statistical Classification of Diseases and Related Health Problems Tenth Revision (ICD-10), 2007
[41]
20 Genovese G, Handsaker R E, Li H, et al. Using population admixture to help complete maps of the human genome. Nat Genet, 2013, 45: 406-414
[42]
21 Feinleib D. The Big Data Landscape. Big Data Bootcamp. New York: Apress, 2014. 15-34
[43]
22 Xu J. GMA: A generic match algorithm for structural homomorphism, isomorphism, and maximal common substructure match and its applications. J Chem Inf Comput Sci, 1996, 36: 25-34
[44]
23 Degtyarenko K, Hastings J, Matos P, et al. ChEBI: An open bioinformatics and cheminformatics resource. Curr Protoc Bioinf, 2009, 14: 14.9
[45]
24 Marx V. Biology: The big challenges of big data. Nature, 2013, 498: 255-260
[46]
25 Collignon B, Schulz R, Smith J C, et al. Task-parallel message passing interface implementation of Autodock4 for docking of very large databases of compounds using high-performance super-computers. J Comput Chem, 2011, 32: 1202-1209
[47]
26 Shaw D E, Maragakis P, Lindorff-Larsen K, et al. Atomic-level characterization of the structural dynamics of proteins. Science, 2010, 330: 341-346
[48]
27 Rutherford K M, Harris M A, Lock A, et al. Canto: An online tool for community literature curation. Bioinformatics, 2014, 30: 1791-1792
[49]
35 Gasarch W I. The P=?NP poll. SIGACT News, 2002, 33: 34-47
[50]
43 Kohonen T. Self-Organization And Associative Memory. 3rd ed. New York: Springer-Verlag, 1989
[51]
44 Jain A K, Murty M N, Flynn P J. Data clustering: A review. ACM Comput Surv, 1999, 31: 264-323
[52]
45 Warmuth M K, Liao J, R?tsch G, et al. Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci, 2003, 43: 667-673
[53]
46 Cramer G, Ford R, Hall R. Estimation of toxic hazard—A decision tree approach. Food Cosmet Toxicol, 1976, 16: 255-276
[54]
47 Kohavi R. Scaling up the accuracy of na?ve-bayes classifiers: A decision-tree hybrid. In: Simoudis E, Han J, Fayyad U, eds. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96). Menlo Park, CA: AAAI Press, 1996. 202-207
[55]
51 Salomon-Ferrer R, G?tz A W, Poole D, et al. Routine microsecond molecular dynamics simulations with Amber on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput, 2013, 9: 3878-3888
[56]
52 Stone J E, Hardy D J, Ufimtsev I S, et al. GPU-accelerated molecular modeling coming of age. J Mol Grap, 2010, 29: 116-125
[57]
53 Suhartanto H, Yanuar A, Wibisono A. Performance analysis cluster and GPU computing environment on molecular dynamic simulation of BRV-1 and REM2 with GROMACS. Int J Comput Sci Issu, 2011, 8: 131-135
[58]
54 Wang L, Gu Q, Zheng X, et al. Discovery of new selective human aldose reductase inhibitors through virtual screening multiple binding pocket conformations. J Chem Inf Model, 2013, 53: 2409-2422
[59]
55 Liu L, Liu X, Gong J, et al. Accelerating all-atom normal mode analysis with graphics processing unit. J Chem Theory Comput, 2011, 7: 1595-1603
[60]
59 Yan X, Li J, Gu Q, et al. gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison. J Comput Chem, 2014, 35: 1122-1130
[61]
60 Zheng M, Liu Z, Yan X, et al. LBVS: An online platform for ligand-based virtual screening using publicly accessible databases. Mol Divers, 2014, 18: 829-840
[62]
61 Liu Z, Zheng M, Yan X, et al. ChemStable: A web server for rule-embedded na?ve Bayesian learning approach to predict compound stability. J Comput Aided Mol Des, 2014, 28: 941-950
[63]
62 Asadi N B. High performance reconfigurable computing for learning bayesian networks with flexible parametrization. Doctor Dissertation. Palo Alto: Stanford University, 2010
[64]
63 Fang J, Yang R, Gao L, et al. Predictions of BuChE inhibitors using support vector machine and naive bayesian classification techniques in drug discovery. J Chem Inf Model, 2013, 53: 3009-3020
[65]
64 Wang L, Chen L, Liu Z, et al. Predicting mTOR Inhibitors with a classifier using recursive partitioning and na?ve bayesian approaches. PLoS One, 2014, 9: e95221