全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

南京持续雾霾天气中亚微米细颗粒物化学组分及光学性质

DOI: 10.1360/972013-1098, PP. 1955-1966

Keywords: 雾霾,ACSM,PM1化学组成,有机气溶胶,PMF,光学性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

2013年1月,我国中东部地区发生持续性雾霾污染事件.本研究利用Aerodyne气溶胶化学组分监测仪(ACSM)对南京地区非难熔性亚微米细颗粒物(NR-PM1)化学组分(包括有机物、硫酸盐、硝酸盐、铵盐和氯化物)进行实时在线连续监测,结合光声气溶胶消光仪(PAX)表征大气颗粒物的消光性质和黑碳测量仪(Aethalometer)测定黑碳(BC)的浓度.观测期间,有机物、硝酸盐、硫酸盐、铵盐、氯化物和BC对PM1(NR-PM1+BC)的贡献分别为32.3%,26.0%,17.9%,13.2%,2.8%和7.8%.利用正定矩阵因子分析法(PMF)解析出3类有机气溶胶烃类有机气溶胶(HOA)、半挥发低氧化态有机气溶胶(SV-OOA)和低挥发高氧化态有机气溶胶(LV-OOA),三者平均浓度分别占总有机气溶胶的27.4%,32.2%和40.4%.可见观测期间二次组分是PM1的主体部分.受本地晚间餐饮源和机动车排放高峰的影响,HOA在晚间时段急剧增加,导致观测期间有机物出现剧烈的变化特征.整体而言,二次气溶胶(硫酸盐、硝酸盐、SV-OOA和LV-OOA)的质量浓度、总质量分数和气溶胶单次散射反照率分别随相对湿度(RH)的增加而升高,表明RH的增加有利于二次气溶胶的不断形成.另外,大气能见度随RH的增加而降低,也随二次组分含量的增加而降低,说明RH与PM1中二次组分对雾霾期间大气能见度产生协同影响.

References

[1]  1 Kaufman Y J, Tanre D, Boucher O. A satellite view of aerosols in the climate system. Nature, 2002, 419: 215-223
[2]  2 Du H H, Kong L D, Cheng T T, et al. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos Environ, 2011, 45: 5131-5137
[3]  4 Kang H Q, Zhu B, Su J F, et al. Analysis of a long-lasting haze episode in Nanjing, China. Atmos Res, 2013, 120-121: 78-87
[4]  5 Cheng M T, Tsai Y I. Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas. Sci Total Environ, 2000, 263: 101-114
[5]  6 江琪, 孙业乐, 王自发, 等. 应用颗粒物化学组分监测仪(ACSM)实时在线测定致霾细粒子无机和有机组分. 科学通报, 2013, 58: 3818-3828
[6]  7 Sun J Y, Zhang Q, Canagaratna M R, et al. Highly time and size resolved characterization of submicron aerosol particles in Beijing using an aerodyne aerosol mass spectrometer. Atmos Environ, 2010, 44: 131-140
[7]  8 Sun Y L, Wang Z F, Fu P Q, et al. Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos Chem Phys, 2013, 13: 4577-4592
[8]  9 Huang X F, He L Y, Hu M, et al. Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an aerodyne high-resolution aerosol mass spectrometer. Atmos Chem Phys, 2011, 11: 1865-1877
[9]  10 Sun Y L, Zhang Q, Schwab J J, et al. A case study of aerosol processing and evolution in summer in New York city. Atmos Chem Phys, 2011, 11: 12737-12750
[10]  12 Zhang Q, Worsnop D R, Canagaratna M R, et al. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: Insights into sources and processes of organic aerosols. Atmos Chem Phys, 2005, 5: 3289-3311
[11]  13 Zhang Q, Worsnop D R, Ramialfarra M, et al. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environ Sci Technol, 2005, 39: 4938-4952
[12]  17 Paatero P. Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst, 1997, 37: 23-35
[13]  18 Quan J, Zhang Q, He H, et al. Analysis of the formation of fog and haze in North China Plain (NCP). Atmos Chem Phys, 2011, 11: 8205-8214
[14]  19 Judith C C, John D B, Susan S G, et al. Visibility: Science and regulation. J Air Waste Manage Assoc, 2002, 52: 973-999
[15]  20 姚婷婷, 黄晓锋, 何凌燕, 等. 深圳市冬季大气消光性质与细粒子化学组成的高时间分辨率观测和统计关系研究. 中国科学: 化学, 2010, 40: 1163-1171
[16]  21 Liu D, Allan J, Whitehead J, et al. Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmos Chem Phys, 2013, 13: 2015-2029
[17]  22 Randriamiarisoa H, Chazette P, Couvert P, et al. Relative humidity impact on aerosol parameters in a Paris suburban area. Atmos Chem Phys, 2006, 6: 1389-1407
[18]  23 Li L, Chen J M, Wang L, et al. Aerosol single scattering albedo affected by chemical composition: An investigation using CRDS combined with MARGA. Atmos Res, 2013, 124: 149-157
[19]  24 Sun Y L, Wang Z F, Fu P Q, et al. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmos Environ, 2013, 77: 927-934
[20]  25 Canagaratna M, Jayne J, Jimenez J L, et al. Chemical and microphysical characterization of aerosols via aerosol mass spectrometry. Mass Spectrom Rev, 2007, 26: 185-222
[21]  26 Middlebrook A M, Bahreini R, Jimenez J L, et al. Evaluation of composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data. Aerosol Sci Technol, 2011, 46: 258-271
[22]  27 Ulbrich I M, Canagaratna M R, Zhang Q, et al. Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys, 2009, 9: 2891-2918
[23]  28 Sun Y L, Zhuang G S, Tang A H, et al. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol, 2006, 40: 3148-3155
[24]  29 Godri K J, Evans, G J, Slowik J, et al. Evaluation and application of a semi-continuous chemical characterization system for water soluble inorganic PM2.5 and associated precursor gases. Atmos Meas Technal, 2009, 2: 65-80
[25]  30 唐孝炎, 张远航, 邵敏. 大气环境化学. 第2 版. 北京: 高等教育出版社, 2006
[26]  31 Huang X F, He L Y, Hu M, et al. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an aerodyne high-resolution aerosol mass spectrometer. Atmos Chem Phys, 2010, 10: 8933-8945
[27]  32 Huang X F, He L Y, Xue L, et al. Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmos Chem Phys, 2012, 12: 4897-4907
[28]  33 Ng N L, Canagaratna M R, Jimenez J L, et al. Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos Chem Phys, 2011, 11: 6465-6474
[29]  34 Huang X F, Xue L, Tian X D, et al. Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation. Atmos Environ, 2013, 64: 200-207
[30]  35 Mohr C, DeCarlo P F, Heringa M F, et al. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer. Atmos Chem Phys, 2012, 12: 1649-1665
[31]  36 He L Y, Lin Y, Huang X F, et al. Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning. Atmos Chem Phys, 2010, 10: 11535-11543
[32]  3 Pope C A, Burnett R T, Thun M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA-J Am Med Assoc, 2002, 287: 1132-1141
[33]  11 Aiken A C, Salcedo D, Cubison M J, et al. Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0). Part 1: Fine particle composition and organic source apportionment. Atmos Chem Phys, 2009, 9: 6633-6653
[34]  14 Sun Y L, Wang Z F, Dong H B, et al. Characterization of summer organic and inorganic aerosols in Beijing, China with an aerosol chemical speciation monitor. Atmos Environ, 2012, 51: 250-259
[35]  15 Ng N L, Herndon S C, Trimborn A, et al. An aerosol chemical speciation monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Sci Technol, 2011, 45: 770-784
[36]  16 Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994, 5: 111-126
[37]  37 Hu W W, Hu M, Yuan B, et al. Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of Central Eastern China. Atmos Chem Phys, 2013, 13: 10095-10112
[38]  38 Jimenez J L, Canagaratna M R, Donahue N M, et al. Evolution of organic aerosols in the atmosphere. Science, 2009, 326: 1525-1529
[39]  39 宫照恒, 薛莲, 孙天乐, 等. 基于高分辨质谱在线观测的2011深圳大运会前后PM1化学组成与粒径分布. 中国科学: 化学, 2012, 42: 1-10
[40]  40 Watson J G. Visibility: Science and regulation. J Air Waste Manage Assoc, 2002, 52: 628-713

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133