全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2011 

岩溶生态系统中微生物对岩溶作用影响的认识

, PP. 2158-2161

Keywords: 微生物,岩溶作用速率,碳汇稳定性,碳循环,碳酸盐沉积,碳捕获

Full-Text   Cite this paper   Add to My Lib

Abstract:

从土壤及岩生微生物影响岩溶作用的速度和微生物捕获CO2及诱导碳酸盐形成等方面分析了岩溶生态系统中微生物对岩溶作用的影响,指出岩溶作用的速度和碳汇稳定性以及岩溶地区的碳循环与微生物有密切关联.提出需要结合不同生态环境来定量研究自然条件下微生物对岩溶作用的影响,以揭示生物对环境变迁的响应及其与岩溶效应之间的关系.

References

[1]  4 袁道先. 碳循环与全球岩溶. 第四纪研究, 1993, 13: 1-6
[2]  5 刘再华. 大气CO2 的两个重要的汇. 科学通报, 2000, 45: 2348-2351
[3]  9 何寻阳, 苏以荣, 梁月明, 等. 喀斯特峰丛洼地不同退耕模式土壤微生物多样性. 应用生态学报, 2010, 21: 317-324
[4]  11 邹胜章, 邓振平, 梁彬, 等. 岩溶水系统中微生物迁移机制. 环境污染与防治, 2010, 32: 1-4
[5]  12 冯慧芳, 贺秋芳, 谢世友, 等. 重庆岩溶山区农村饮用水水质评价及分析. 地球与环境, 2010, 38: 54-58
[6]  13 Tang Y, Lian B, Dong H L, et al. Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang Canyon in Guizhoukarst area (China). Geomicrobiol J, 2012, doi: 10.1080/01490451.2011.558560
[7]  16 潘根兴, 曹建华. 表层带岩溶作用: 以土壤为媒介的地球表层生态系统过程. 中国岩溶, 1999, 18: 287-296
[8]  17 潘根兴, 曹建华, 周运超. 土壤碳及其在地球表层系统碳循环中的意义. 第四纪研究, 2000, 20: 325-334
[9]  19 窦传伟, 连宾. 一株岩生真菌对方解石的风化作用. 矿物学报, 2009, 29: 387-391
[10]  20 Jongmans A G, Van Breemen N, Lundstrom U, et al. Rock-eating fungi. Nature, 1997, 389: 682-683??
[11]  21 Sterflinger K. Fungi as geologic agents. Geomicrobiol J, 2000, 17: 97-124??
[12]  23 Lian B, Chen Y, Zhu L J, et al. Effect of microbial weathering on carbonate rocks. Earth Sci Front, 2008, 15: 90-99??
[13]  26 Li W, Yu L J, He Q F, et al. Effects of microbes and their carbonic anhydrase on Ca2+ and Mg2+ migration in column-built leachedsoil-limestone karst systems. Appl Soil Ecol, 2005, 29: 274-281??
[14]  27 Li W, Yu L J, Wu Y, et al. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase. Bioresour Technol,2007, 98: 950-953??
[15]  28 Nathalie F M, Lorraine C, Alain C P. Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. J MolCatal B-Enzym, 2009, 60: 163-170??
[16]  32 Lian B, Hu Q N, Ji J F, et al. Carbonate biomineralization induced by soil bacteria Bacillus megaterium. Geochim Cosmochim Acta, 2006,70: 5522-5535??
[17]  33 周雪莹, 杜叶, 连宾. 不同培养条件对胶质芽孢杆菌诱导碳酸钙晶体形成的影响. 微生物学报, 2010, 50: 955-961
[18]  36 Lian B, Chen Y, Zhao J, et al. Microbial flocculation by silicate bacterium Bacillus mucilaginosus: Applications and mechanisms. BioresourTechnol, 2008, 99: 4825-4831
[19]  37 Hou W G, Lian B, Zhang X Q. CO2 mineralization induced by fungal nitrate assimilation. Bioresour Technol, 2011, 102: 1562-1566??
[20]  1 Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: The role of the diffusionboundary layer and the slow reaction H2O+CO2?H++HCO3-. Geochim Cosmochim Acta, 1997, 61: 2879-2889??
[21]  2 Liu Z H, Dreybrodt W, Wang H J. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined actionof carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci Rev, 2010, 99: 162-172??
[22]  3 Liu Z H, Dreybrodt W, Liu H. Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Appl Geochem, 2011, 26: s292-s294
[23]  6 Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority. Proc Natl Acad Sci USA, 1998, 95: 6578-6583??
[24]  7 许玫英, 孙国萍, 郭俊. 微生物生态系统代谢网络研究进展. 微生物学报, 2010, 50: 438-443
[25]  8 何寻阳, 王克林, 于一尊, 等. 岩溶区植被和季节对土壤微生物遗传多样性的影响. 生态学报, 2009, 29: 1763-1769
[26]  10 贺秋芳, 杨平恒, 袁文昊, 等. 微生物与化学示踪岩溶地下水补给源和途径. 水文地质工程地质, 2009, (3): 33-38
[27]  14 Horath T, Bachofen R. Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland).Microb Ecol, 2009, 58: 290-306??
[28]  15 袁道先, 蒋忠诚. IGCP 379 “岩溶作用与碳循环” 在中国的研究进展. 水文地质工程地质, 2000, (1): 49-51
[29]  18 丁丽君, 连宾. 碳酸钙微生物风化试验研究. 中国岩溶, 2008, 27: 197-200
[30]  22 Gorbushina A A. Life on the rocks. Environ Microbiol, 2007, 9: 1613-1631??
[31]  24 Gadd G M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bio-weathering and bioremediation.Mycol Res, 2007, 111: 3-49??
[32]  25 曹建华, 袁道先, 潘根兴, 等. 岩溶动力系统中的生物作用机理初探. 地学前缘, 2001, 8: 203-208
[33]  29 Sharma A, Bhattacharya A, Singh S. Purification and characterization of an extracellular carbonic anhydrase from Pseudomonas fragi.Proc Biochem, 2009, 44: 1293-1297??
[34]  30 Wright V. The role of fungal biomineralization in the formation of Early Carboniferous soil fabrics. Sedimentology, 1986, 33: 831-838??
[35]  31 Masaphy S, Zabari L, Pastrana J, et al. Role of fungal mycelium in the formation of carbonate concretions in growing media—An investigationby SEM and synchrotron-based X-Ray tomographic microscopy. Geomicrobiol J, 2006, 26: 442-450
[36]  34 李辉, 连宾, 龚国洪, 等. 碳酸钙颗粒的细菌诱导形成. 高校地质学报, 2011, 17: 112-117
[37]  35 Chen Y, Lian B. Ability of Bacillus mucilaginosus GY03 Strain to adsorb chromium ions. Pedosphere, 2005, 15: 225-231
[38]  38 Galloway J N, Levy H II, Kasibhatla P S. Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen.Ambio, 1994, 23: 120-123
[39]  39 刘再华, Wolfgang D, 王海静. 一种由全球水循环产生的可能重要的 CO2 汇. 科学通报, 2007, 52: 2418-2422
[40]  40 Zhang Z C, Lian B, Hou W G, et al. Bacillus mucilaginosus can capture atmospheric CO2 by carbonic anhydrase. Afr J Microbiol Res,2011, 5: 106-112

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133