全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

DOI: 10.1155/2012/236289

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alzheimer’s disease (AD) progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ) oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35) reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch) with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions. 1. Introduction Alzheimer’s disease (AD), the most common form of dementia, is characterized by a progressive decline in cognitive function [1–5] that correlates with the extracellular accumulation of amyloid beta protein (Aβ) [1, 4, 5]. Deterioration of hippocampal function, likely induced by Aβ oligomers, contributes to the memory deficits associated with Alzheimer’s disease (AD) [5–8]. Normal hippocampal function is strongly dependent on a 3 to 10 Hz oscillatory activity, namely, the theta rhythm [9–11]. Theta oscillations have been associated with various cognitive processes in several species, including humans [9–11]. Theta rhythm abnormalities are usually related to memory deficits and pathological changes in the brain [12–14]. In fact, subjects with AD show a typical “electroencephalographic slowing” that includes increased slow rhythms and decreased fast rhythms [6, 13, 15, 16]. Regarding theta rhythm, AD patients show increased theta rhythm at rest [6, 15, 16], but they also show a decrease in induced-theta rhythm; both of these changes in theta rhythm correlate with a reduced cognitive performance [17]. A similar contradictory scenario has

References

[1]  H. Braak and E. Braak, “Diagnostic criteria for neuropathologic assessment of Alzheimer's disease,” Neurobiology of Aging, vol. 18, no. 4, supplement 1, pp. S85–S88, 1997.
[2]  L. F. Lue, Y. M. Kuo, A. E. Roher et al., “Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease,” American Journal of Pathology, vol. 155, no. 3, pp. 853–862, 1999.
[3]  J. N?slund, V. Haroutunian, R. Mohs et al., “Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline,” JAMA, vol. 283, no. 12, pp. 1571–1577, 2000.
[4]  F. Pe?a, A. I. Gutiérrez-Lerma, R. Quiroz-Baez, and C. Arias, “The role of β-amyloid protein in synaptic function: implications for Alzheimer's disease therapy,” Current Neuropharmacology, vol. 4, no. 2, pp. 149–163, 2006.
[5]  D. J. Selkoe, “Alzheimer's disease is a synaptic failure,” Science, vol. 298, no. 5594, pp. 789–791, 2002.
[6]  C. Babiloni, G. B. Frisoni, M. Pievani et al., “Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease,” NeuroImage, vol. 44, no. 1, pp. 123–135, 2009.
[7]  W. L. Klein, G. A. Krafft, and C. E. Finch, “Targeting small A β oligomers: the solution to an Alzheimer's disease conundrum?” Trends in Neurosciences, vol. 24, no. 4, pp. 219–224, 2001.
[8]  T. Ondrejcak, I. Klyubin, N. W. Hu, A. E. Barry, W. K. Cullen, and M. J. Rowan, “Alzheimer's disease amyloid β-protein and synaptic function,” NeuroMolecular Medicine, vol. 12, no. 1, pp. 13–26, 2010.
[9]  B. H. Bland and L. V. Colom, “Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex,” Progress in Neurobiology, vol. 41, no. 2, pp. 157–208, 1993.
[10]  M. J. Kahana, D. Seelig, and J. R. Madsen, “Theta returns,” Current Opinion in Neurobiology, vol. 11, no. 6, pp. 739–744, 2001.
[11]  W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Research Reviews, vol. 29, no. 2-3, pp. 169–195, 1999.
[12]  L. V. Colom, “Septal networks: relevance to theta rhythm, epilepsy and Alzheimer's disease,” Journal of Neurochemistry, vol. 96, no. 3, pp. 609–623, 2006.
[13]  C. E. Jackson and P. J. Snyder, “Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer's disease,” Alzheimer's and Dementia, vol. 4, no. 1, supplement 1, pp. S137–S143, 2008.
[14]  P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology,” Neuron, vol. 52, no. 1, pp. 155–168, 2006.
[15]  C. Babiloni, E. Cassetta, G. Binetti et al., “Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer's disease,” European Journal of Neuroscience, vol. 25, no. 12, pp. 3742–3757, 2007.
[16]  C. Huang, L. O. Wahlund, T. Dierks, P. Julin, B. Winblad, and V. Jelic, “Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study,” Clinical Neurophysiology, vol. 111, no. 11, pp. 1961–1967, 2000.
[17]  T. D. R. Cummins, M. Broughton, and S. Finnigan, “Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load,” International Journal of Psychophysiology, vol. 70, no. 1, pp. 75–81, 2008.
[18]  A. Jyoti, A. Plano, G. Riedel, and B. Platt, “EEG, activity, and sleep architecture in a transgenic AβPP swe/PSEN1A246E Alzheimer's disease mouse,” Journal of Alzheimer's Disease, vol. 22, no. 3, pp. 873–887, 2010.
[19]  J. Wang, S. Ikonen, K. Gurevicius, T. Van Groen, and H. Tanila, “Alteration of cortical EEG in mice carrying mutated human APP transgene,” Brain Research, vol. 943, no. 2, pp. 181–190, 2002.
[20]  J. Shin, “Theta rhythm heterogeneity in humans,” Clinical Neurophysiology, vol. 121, no. 3, pp. 456–457, 2010.
[21]  M. Akay, K. Wang, Y. M. Akay, A. Dragomir, and J. Wu, “Nonlinear dynamical analysis of carbachol induced hippocampal oscillations in mice,” Acta Pharmacologica Sinica, vol. 30, no. 6, pp. 859–867, 2009.
[22]  H. Balleza-Tapia, A. Huanosta-Gutiérrez, A. Márquez-Ramos, N. Arias, and F. Pe?a, “Amyloid β oligomers decrease hippocampal spontaneous network activity in an age-dependent manner,” Current Alzheimer Research, vol. 7, no. 5, pp. 453–462, 2010.
[23]  R. N. Le?o, L. V. Colom, L. Borgius, O. Kiehn, and A. Fisahn, “Medial septal dysfunction by Aβ-induced KCNQ channel-block in glutamatergic neurons,” Neurobiology of Aging. In press.
[24]  L. V. Colom, M. T. Casta?eda, C. Ba?uelos et al., “Medial septal β-amyloid 1–40 injections alter septo-hippocampal anatomy and function,” Neurobiology of Aging, vol. 31, no. 1, pp. 46–57, 2010.
[25]  V. Villette, F. Poindessous-Jazat, A. Simon et al., “Decreased rhythmic GABAergic septal activity and memory-associated θ oscillations after hippocampal amyloid-β pathology in the rat,” Journal of Neuroscience, vol. 30, no. 33, pp. 10991–11003, 2010.
[26]  F. Pe?a, B. Ordaz, H. Balleza-Tapia et al., “Beta-amyloid protein (25–35) disrupts hippocampal network activity: role of Fyn-kinase,” Hippocampus, vol. 20, no. 1, pp. 78–96, 2010.
[27]  A. Adaya-Villanueva, B. Ordaz, H. Balleza-Tapia, A. Márquez-Ramos, and F. Pe?a-Ortega, “Beta-like hippocampal network activity is differentially affected by amyloid beta peptides,” Peptides, vol. 31, no. 9, pp. 1761–1766, 2010.
[28]  F. Pe?a and R. Tapia, “Relationships among seizures, extracellular amino acid changes, and neurodegeneration induced by 4-aminopyridine in rat hippocampus: a microdialysis and electroencephalographic study,” Journal of Neurochemistry, vol. 72, no. 5, pp. 2006–2014, 1999.
[29]  F. Pe?a and R. Tapia, “Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels,” Neuroscience, vol. 101, no. 3, pp. 547–561, 2000.
[30]  G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, 2005.
[31]  L. Carmona-Aparicio, F. Pe?a, A. Borsodi, and L. Rocha, “Effects of nociceptin on the spread and seizure activity in the rat amygdala kindling model: their correlations with 3H-leucyl-nociceptin binding,” Epilepsy Research, vol. 77, no. 2-3, pp. 75–84, 2007.
[32]  R. N. Romcy-Pereira, D. B. de Araujo, J. P. Leite, and N. Garcia-Cairasco, “A semi-automated algorithm for studying neuronal oscillatory patterns: a wavelet-based time frequency and coherence analysis,” Journal of Neuroscience Methods, vol. 167, no. 2, pp. 384–392, 2008.
[33]  C. Andrew and G. Fein, “Induced theta oscillations as biomarkers for alcoholism,” Clinical Neurophysiology, vol. 121, no. 3, pp. 350–358, 2010.
[34]  J. S. Macdonald, S. Mathan, and N. Yeung, “Trial-by-trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations,” Frontiers in Psychology, vol. 2, article 82, 2011.
[35]  J. J. Wright and M. D. Craggs, “Intracranial self-stimulation, cortical arousal, and the sensorimotor neglect syndrome,” Experimental Neurology, vol. 65, no. 1, pp. 42–52, 1979.
[36]  J. Czimmer, M. Million, and Y. Taché, “Urocortin 2 acts centrally to delay gastric emptying through sympathetic pathways while CRF and urocortin 1 inhibitory actions are vagal dependent in rats,” American Journal of Physiology, vol. 290, no. 3, pp. G511–G518, 2006.
[37]  O. Gunther, G. L. Kovacs, G. Szabo, H. Schwarzberg, and G. Telegdy, “Differential effect of vasopressin on open-field activity and passive avoidance behaviour following intracerebroventricular versus intracisternal administration in rats,” Acta Physiologica Hungarica, vol. 71, no. 2, pp. 203–206, 1988.
[38]  O. Gunther and H. Schwarzberg, “Influence of intracerebroventricularly and intracisternally administered vasopressin on the hypothalamic self-stimulation rate of the rat,” Neuropeptides, vol. 10, no. 4, pp. 361–367, 1987.
[39]  D. Harland, S. M. Gardiner, and T. Bennett, “Differential cardiovascular effects of centrally administered vasopressin in conscious Long Evans and Brattleboro rats,” Circulation Research, vol. 65, no. 4, pp. 925–933, 1989.
[40]  H. Lee, N. N. Naughton, J. H. Woods, and M. C. H. Ko, “Characterization of scratching responses in rats following centrally administered morphine or bombesin,” Behavioural Pharmacology, vol. 14, no. 7, pp. 501–508, 2003.
[41]  M. Ozawa, M. Aono, and M. Moriga, “Central effects of pituitary adenylate cyclase activating polypeptide (PACAP) on gastric motility and emptying in rats,” Digestive Diseases and Sciences, vol. 44, no. 4, pp. 735–743, 1999.
[42]  K. H. Park, J. P. Long, and J. G. Cannon, “Evaluation of the central and peripheral components for induction of postural hypotension by guanethidine, clonidine, dopamine2 receptor agonists and 5-hydroxytryptamine(1A) receptor agonists,” Journal of Pharmacology and Experimental Therapeutics, vol. 259, no. 3, pp. 1221–1230, 1991.
[43]  E. A. Mugantseva and I. Y. Podolski, “Animal model of Alzheimer's disease: characteristics of EEG and memory,” Central European Journal of Biology, vol. 4, no. 4, pp. 507–514, 2009.
[44]  X. Zou, D. Coyle, K. Wong-Lin, and L. Maguire, “Beta-amyloid induced changes in A-type K+ current can alter hippocampo-septal network dynamics,” Journal of Computational Neuroscience. In press.
[45]  R. Goutagny, J. Jackson, and S. Williams, “Self-generated theta oscillations in the hippocampus,” Nature Neuroscience, vol. 12, no. 12, pp. 1491–1493, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133