The main goal of the present paper was to examine the influence of the replacement of γ-Glu moiety to α-Glu in glutathione and in its antioxidative tetrapeptidic analogue UPF1 (Tyr(Me)-γ-Glu-Cys-Gly), resulting in α-GSH and UPF17 (Tyr(Me)-Glu-Cys-Gly), on the antioxidative defense system in K562 cells. UPF1 and GSH increased while UPF17 and α-GSH decreased the activity of CuZnSOD in K562 cells, at peptide concentration of 10?μM by 42% and 38% or 35% and 24%, respectively. After three-hour incubation, UPF1 increased and UPF17 decreased the intracellular level of total GSH. Additionally, it was shown that UPF1 is not degraded by γ-glutamyltranspeptidase, which performs glutathione breakdown. These results indicate that effective antioxidative character of peptides does not depend only on the reactivity of the thiol group, but also of the other functional groups, and on the spatial structure of peptides. 1. Introduction Glutathione (GSH) system is an attractive target for drug discovery because of its importance and versatility [1]. GSH (γ-L-Glu-L-Cys-Gly) is a prevalent low molecular weight thiol in eukaryotic cells and has antioxidative, detoxificative, and regulatory roles [2, 3]. Decrease of GSH level and shifted GSH redox status are related to several pathological states, including neurodegenerative, cardiovascular, pulmonary, and immune system diseases [4]. Exogenous administration of GSH to compensate the decrease of GSH levels is not reasonable because of its degradation in the plasma and poor cellular uptake [5–7]. GSH and its oxidized disulfide form (GSSG) are degraded by γ-glutamyltranspeptidase (GGT) via cleavage of the amino acid γ-glutamate from the N-terminal end of the peptide. GGT is located in the outer side of the cell membrane, and one of its functions, in cooperation with dipeptidases, is to provide cells with precursor amino acids needed for GSH de novo synthesis. To overcome the problems with GSH administration, several GSH analogues have been created to increase the GSH level and support the functionality of the GSH system [8]. We have previously designed and synthesized a library of peptidic GSH analogues [9]. For this study, two of them, UPF1 (Tyr(Me)-γ-Glu-Cys-Gly) and UPF17 (Tyr(Me)-Glu-Cys-Gly), were selected. Both molecules have an O-methyl-L-tyrosine residue added to the N-terminus of GSH-like Glu-Cys-Gly sequence to increase the antioxidativity and hydrophobicity. Previously, different groups have shown that various low molecular weight antioxidants, including melatonin, carvedilol, and its metabolite SB 211475, carry a
References
[1]
M. Zilmer, U. Soomets, A. Rehema, and U. Langel, “The glutathione system as an attractive therapeutic target,” Drug Design Reviews Online, vol. 2, no. 2, pp. 121–127, 2005.
[2]
N. H. P. Cnubben, I. M. C. M. Rietjens, H. Wortelboer, J. Van Zanden, and P. J. Van Bladeren, “The interplay of glutathione-related processes in antioxidant defense,” Environmental Toxicology and Pharmacology, vol. 10, no. 4, pp. 141–152, 2001.
[3]
D. A. Dickinson, A. L. Levonen, D. R. Moellering et al., “Human glutamate cysteine ligase gene regulation through the electrophile response element,” Free Radical Biology and Medicine, vol. 37, no. 8, pp. 1152–1159, 2004.
[4]
N. Ballatori, S. M. Krance, S. Notenboom, S. Shi, K. Tieu, and C. L. Hammond, “Glutathione dysregulation and the etiology and progression of human diseases,” Biological Chemistry, vol. 390, no. 3, pp. 191–214, 2009.
[5]
R. Franco, O. J. Schoneveld, A. Pappa, and M. I. Panayiotidis, “The central role of glutathione in the pathophysiology of human diseases,” Archives of Physiology and Biochemistry, vol. 113, no. 4-5, pp. 234–258, 2007.
[6]
O. Ortolani, A. Conti, A. R. De Gaudio, E. Moraldi, Q. Cantini, and G. Novelli, “The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients with early septic shock,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 6, pp. 1907–1911, 2000.
[7]
A. Wendel and P. Cikryt, “The level and half-life of glutathione in human plasma,” FEBS Letters, vol. 120, no. 2, pp. 209–211, 1980.
[8]
I. Cacciatore, C. Cornacchia, F. Pinnen, A. Mollica, and A. Di Stefano, “Prodrug approach for increasing cellular glutathione levels,” Molecules, vol. 15, no. 3, pp. 1242–1264, 2010.
[9]
K. Ehrlich, S. Viirlaid, R. Mahlapuu et al., “Design, synthesis and properties of novel powerful antioxidants, glutathione analogues,” Free Radical Research, vol. 41, no. 7, pp. 779–787, 2007.
[10]
A. Gozzo, D. Lesieur, P. Duriez, J. C. Fruchart, and E. Teissier, “Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model,” Free Radical Biology and Medicine, vol. 26, no. 11-12, pp. 1538–1543, 1999.
[11]
T. L. Yue, P. J. Mckenna, P. G. Lysko et al., “SB 211475, a metabolite of carvedilol, a novel antihypertensive agent, is a potent antioxidant,” European Journal of Pharmacology, vol. 251, no. 2-3, pp. 237–243, 1994.
[12]
J. Kals, J. Starkopf, M. Zilmer et al., “Antioxidant UPF1 attenuates myocardial stunning in isolated rat hearts,” International Journal of Cardiology, vol. 125, no. 1, pp. 133–135, 2008.
[13]
P. P?der, M. Zilmer, J. Starkopf et al., “An antioxidant tetrapeptide UPF1 in rats has a neuroprotective effect in transient global brain ischemia,” Neuroscience Letters, vol. 370, no. 1, pp. 45–50, 2004.
[14]
I. Fridovich, “Superoxide anion radical ( ), superoxide dismutases, and related matters,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18515–18517, 1997.
[15]
M. D. De Beus, J. Chung, and W. Colón, “Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties,” Protein Science, vol. 13, no. 5, pp. 1347–1355, 2004.
[16]
M. A. Hough and S. S. Hasnain, “Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 ?,” Structure, vol. 11, no. 8, pp. 937–946, 2003.
[17]
U. Soomets, M. Zilmer, and ü. Langel, “Manual solid-phase synthesis of glutathione analogues: a laboratory-based short course,” in Peptide Synthesis and Applications, J. Howl, Ed., pp. 241–257, Humana Press, Totowa, NJ, USA, 2006.
[18]
O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of biological chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[19]
F. Tietze, “Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues,” Analytical Biochemistry, vol. 27, no. 3, pp. 502–522, 1969.
[20]
D. Burg, D. V. Filippov, R. Hermanns, G. A. Van der Marel, J. H. Van Boom, and G. J. Mulder, “Peptidomimetic glutathione analogues as novel γGT stable GST inhibitors,” Bioorganic and Medicinal Chemistry, vol. 10, no. 1, pp. 195–205, 2002.
[21]
S. Viirlaid, R. Mahlapuu, K. Kilk, A. Kuznetsov, U. Soomets, and J. J?rv, “Mechanism and stoichiometry of 2,2-diphenyl-1-picrylhydrazyl radical scavenging by glutathione and its novel α-glutamyl derivative,” Bioorganic Chemistry, vol. 37, no. 4, pp. 126–132, 2009.
[22]
K. Ehrlich, K. Ida, R. Mahlapuu et al., “Characterization of UPF peptides, members of the glutathione analogues library, on the basis of their effects on oxidative stress-related enzymes,” Free Radical Research, vol. 43, no. 6, pp. 572–580, 2009.
[23]
E. Karelson, R. Mahlapuu, M. Zilmer, U. Soomets, N. Bogdanovic, and U. Langel, “Possible signaling by glutathione and its novel analogue through potent stimulation of frontocortical G proteins in normal aging and in Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 973, pp. 537–540, 2002.
[24]
R. Janáky, K. Ogita, B. A. Pasqualotto et al., “Glutathione and signal transduction in the mammalian CNS,” Journal of Neurochemistry, vol. 73, no. 3, pp. 889–902, 1999.
[25]
Z. Jenei, R. Janáky, V. Varga, P. Saransaari, and S. S. Oja, “Interference of S-alkyl derivatives of glutathione with brain ionotropic glutamate receptors,” Neurochemical Research, vol. 23, no. 8, pp. 1085–1091, 1998.
[26]
P. G. Genever, D. J. P. Wilkinson, A. J. Patton et al., “Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes,” Blood, vol. 93, no. 9, pp. 2876–2883, 1999.
[27]
A. Makhro, J. Wang, J. Vogel et al., “Functional NMDA receptors in rat erythrocytes,” American Journal of Physiology, vol. 298, no. 6, pp. C1315–C1325, 2010.
[28]
C. Sánchez-Moreno, J. A. Larrauri, and F. Saura-Calixto, “A procedure to measure the antiradical efficiency of polyphenols,” Journal of the Science of Food and Agriculture, vol. 76, no. 2, pp. 270–276, 1998.