全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
中国沙漠  2015 

基于Whittaker滤波的陕西省植被物候特征

DOI: 10.7522/j.issn.1000-694X.2014.00073

Keywords: Whittaker滤波,地理探测器,动态阈值法,物候参数,陕西

Full-Text   Cite this paper   Add to My Lib

Abstract:

运用Whittaker滤波重构MODISNDVI时序数列,利用地理探测器对比滤波前后影像信噪比,采用动态阈值法获取2000-2012年陕西省植被的3个关键物候参数(返青期、枯黄期和生长周期),在此基础上分析了该区植被物候参数空间分布特征。结果表明:(1)Whittaker滤波能够平滑原始NDVI曲线,有效减少原始影像的噪声,提高影像辨识度,并且参数设置简单;(2)陕西省植被物候地区分异明显,不同气候区划类植被物候表现出中温带半干旱区-暖温带半干旱区-暖温带半湿润区-北亚热带湿润区的递变规律:返青期逐步提前,枯黄期逐步推迟;(3)植被物候受高程和纬度影响,并且纬度影响更显著。海拔每升高200m,返青期推迟1.3d,枯黄期提前0.6d;纬度每升高0.5°,返青期推迟3.6d,枯黄期提前1.2d。

References

[1]  J?nsson P,Eklundh L.Seasonality extraction by function fitting to time-series of satellite sensor data[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1824-1932.
[2]  李登科,郭铌.陕西MODIS/NDVI的区域分布和季节变化[J].中国沙漠,2008,28(1):108-112,196. 浏览
[3]  赵艳芬,师玮,潘伯荣,等.沙拐枣属(Calligonum L.)植物物候对长期气温变化的响应[J].中国沙漠,2014,34(3):732-739.
[4]  徐昔保,杨桂山.太湖流域1995-2010年耕地复种指数时空变化遥感分析[J].农业工程学报,2013,29(3):148-155,297.
[5]  丁明军,张镱锂,孙晓敏,等.近10年青藏高原高寒草地物候时空变化特征分析[J].科学通报,2012,57(33):3185-3194.
[6]  方修琦,余卫红.物候对全球变暖响应的研究综述[J].地球科学进展,2002,17(5):714-719.
[7]  White M A,Hoffman F,Hargrove W W,et al.A global framework for monitoring phenological responses to climate change[J].Geophysical Research,2005,32:L04705.
[8]  Jeong S J,Ho C H,Gim H J,et al.Phenology shifts at start vs.end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008[J].Global Change Biology,2011,17(7):2385-2399.
[9]  Zhang X Y,Friedl M A,Schaaf C B,et al.Monitoring vegetation phenology using MODIS[J].Remote Sensing of Environment,2003,84(3):471-475.
[10]  Beck P S A,Atzberger C,Hogda K A,et al.Improved monitoring of vegetation dynamics at very high latitudes:a new method using MODIS NDVI[J].Remote Sensing of Environment,2006,100(3):321-334.
[11]  包刚,覃志豪,包玉海,等.1982-2006年蒙古高原植被覆盖时空变化分析[J].中国沙漠,2013,33(3):918-927. 浏览
[12]  Atzberger C,Eilers P H C.A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America[J].International Journal of Digital Earth,2011,4(5):365-386.
[13]  夏传福,李静,柳钦火.植被物候遥感监测研究进展[J].遥感学报,2013,17(1):1-16.
[14]  Peter A M,Jeganathan C,et al.Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology[J].Remote Sensing of Environment,2012,123:400-417.
[15]  Vilela M,Borges C C H,Vinga S,et al.Automated smoother for the numerical decoupling of dynamics models[J].BMC Bioinformatics,2007,8:305.
[16]  梁嘉如,陈华舟,秦强.FT-NIR光谱法与Whittaker平滑应用于土壤有机质和总氮的定量检测[J].分析试验室,2013,32(9):11-15.
[17]  贺映娜.秦岭植被物候期及遥感生长季的变化研究[D].西安:西北大学,2012.
[18]  何磊,王超,别强,等.利用MOD13Q1产品监测肯尼亚2001-2010年荒漠化动态[J].中国沙漠,2013,33(1):46-52. 浏览
[19]  郑景云,尹云鹤,李炳元.中国气候区划新方案[J].地理学报,2010,65(1):3-12.
[20]  Atzberger C,Rembold F.Estimation of inter-annual winter crop area variation and spatial distribution with low resolution NDVI data by using neural nets trained on high resolution images[C].Proceedings of SPIE7472,2009.
[21]  Wang J F,Li X H,Christakos G,et al.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the He shun Region,China[J].International Journal of Geographical Information Science,2010,24(1):107-127.
[22]  刘彦随,杨忍.中国县域城镇化的空间特征与形成机理[J].地理学报,2012,67(8):1011-1020.
[23]  梁守真,施平,邢前国.MODIS NDVI时间序列数据的去云算法比较[J].国土资源遥感,2011(1):33-36.
[24]  朱博,王新鸿,唐伶俐,等.光学遥感图像信噪比评估方法研究进展[J].遥感技术与应用,2010,25(2):303-309.
[25]  夏传福,李静,柳钦火.植被物候遥感监测研究进展[J].遥感学报,2013,17(1):1-16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133