全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蚯蚓与菌根提高玉米生长和氮磷吸收的互补效应

DOI: 10.11674/zwyf.2015.0410, PP. 920-926

Keywords: 丛枝菌根真菌,蚯蚓,交互作用,氮磷互补

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】蚯蚓和丛枝菌根真菌处于不同的营养级,但在促进植物生长和提高土壤肥力等方面却都发挥着积极作用。研究蚯蚓菌根互作及其对玉米吸收土壤中的氮、磷养分的影响,可为提升土壤生物肥力及促进农业的可持续发展提供理论依据。【方法】本研究采用田间盆栽方式,以玉米为供试作物,研究蚯蚓(Eiseniafetida)与丛枝菌根真菌(Glomusintraradices)互作及其对玉米养分吸收的影响。试验设置P25和175mg/kg两个水平。每个磷水平进行接种与不接种菌根真菌以及添加与不添加蚯蚓,共8个处理。调查了玉米生长、养分吸收以及真菌浸染和土壤养分的有效性。【结果】两个磷水平下,蚯蚓和菌根在增加玉米地上部和根系生物量方面有显著正交互作用(P<0.05)。接种菌根真菌的各处理显著增加了玉米的侵染率及泡囊丰度、根内菌丝丰度等菌根指标。同时添加蚯蚓和接种菌根真菌的处理(AM+E)显著提高了菌根的侵染率、菌丝密度、丛枝丰度和根内菌丝丰度但是泡囊丰度有所下降。两种磷水平下,AM+E处理玉米地上部和地下部含氮量和含磷量均显著高于其他三个处理。在低磷条件下,地上部氮磷总量的增加分别是添加蚯蚓和接菌的作用;而地下部磷总量的增加主要是菌根真菌的作用。在高磷条件下,单加蚯蚓显著增加玉米氮磷的总量,而接种菌根真菌对玉米氮磷吸收的影响未达显著性水平。在高磷条件下,单加蚯蚓的处理显著提高玉米地上地下部生物量(P<0.05),而单接菌的处理效应不显著,蚯蚓菌根互作通过提高土壤微生物量碳、氮实现对玉米生长和养分吸收的调控。在低磷条件下,单接菌显著提高了玉米的生物量(P<0.05),单加蚯蚓的处理具有增加玉米生物量的趋势。菌根真菌主要促进玉米对磷的吸收,蚯蚓主要矿化秸秆和土壤中的氮磷养分增加土壤养分的有效性,蚯蚓菌根互作促进了玉米根系对土壤养分的吸收并形成氮磷互补效应。【结论】无论在高磷还是低磷水平下,蚯蚓菌根相互作用都提高了玉米地上地下部生物量、氮磷吸收量同时提高了土壤微生物量碳、氮。蚯蚓菌根相互作用对植物生长的影响取决于土壤养分条件。在高磷条件下(氮相对不足),蚯蚓菌根互作通过调控土壤微生物量碳、氮调控玉米生长和养分吸收。低磷条件下,菌根主要发挥解磷作用,蚯蚓主要矿化秸秆和土壤中的氮素,蚯蚓和菌根互补调控土壤中氮、磷,从而促进植物的生长和养分吸收。

References

[1]  Lawrence B, Fisk M C, Fahey T J. Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum)[J]. New Phytologist, 2003, 157: 145-153.
[2]  Ortiz-Ceballos A I, Fragoso C, Brown G G. Mycorrhizal colonization and nitrogen uptake by maize: combined effect of tropical earthworms and velvetbean mulch[J]. Biology and Fertility of Soils, 2007, 44: 181-186.
[3]  Azcón R, Azcon-Aguilar C, Barea J M. Effect of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza[J]. New Phytologist, 1978, 80: 359-364.
[4]  Wurst S, Dugassa-Gobena D, Langel R et al. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance[J]. New Phytologist, 2004, 163: 169-173.
[5]  Koerselman W, Meuleman A F W. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441-1450.
[6]  Scheu S. Effects of earthworms on plant growth: patterns and perspectives[J]. Pedobiologia, 2003, 47: 846-856.
[7]  Abbott L K, Murphy D V. Soil biological fertility: A key to sustainable land use in agriculture[M]. New York, US: Springer-Verlag New York Inc., 2003. 99-102.
[8]  Singh J S, Singh D P, Kashyap A K. A comparative account of the microbial biomass-N and N-mineralization of soils under natural forest, grassland and crop field from dry tropical region, India[J]. Plant Soil and Environment, 2009, 55: 223-230.
[9]  Campbell C A, Biederbeck V O, Wen G et al. Seasonal trends in soil biochemical attributes: effects of crop rotations in the semi-arid prairie. Canadian Journal of Soil Science, 1999, 79: 73-84.
[10]  Johansson J F, Paul L R, Finlay R D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMS Microbiology Ecology, 2004, 48: 1-13.
[11]  Van Aarle I M, Soderstrom B, Olsson P A. Growth and interactions of arbuscula rmycorrhizal fungi in soils from limestone and acid rock habitats[J]. Soil Biology and Biochemistry, 2003, 35: 1557-1564.
[12]  Svensson K, Friberg H. Changes in active microbial biomass by earthworms and grass amendments in agricultural soil[J]. Biology and Fertility of Soils, 2007, 44: 223-228.
[13]  Zarea M J, Ghalavand A, Goltapeh E M. Effects of mixed cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria[J]. Pedobiologia, 2009, 4: 223-235.
[14]  Curry J P, Schmidt O. The feeding ecology of earthworms-a review[J]. Pedobiologia, 2007, 50: 463-477.
[15]  Magdoff F, Weil R R. Soil organic matter in sustainable agriculture[M]. Boca Raton: CRC Press, 2004, 15-21.
[16]  Jordan D, Kremer R J, Bergfield W A et al. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields[J]. Biology and Fertility of Soils, 1995, 19: 297-302.
[17]  Johansen A, Jakobsen I, Jensen E S. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels[J]. Plant and Soil, 1994, 160: 1-9.
[18]  Wangn L G, LI W J, Qiu J J et al. Effects of biological organic fertilizer on crops growth soil fertility and yield[J].Soil and Fertilizers,2004, (5): 12-16.
[19]  Eisenhauer N, Scheu S. Earthworms as drivers of the competition between grasses and legumes[J]. Soil Biology and Biochemistry, 2008, 40: 2650-2659.
[20]  Milcu A, Partsch S, Scherber C et al. Earthworms and legumes control litter decomposition in a plant diversity gradient[J]. Ecology, 2008, 89: 1872-1882.
[21]  Tiunov A V, Dobrovolskaya T G. Fungal and bacterial communities in Lumbricus terrestris burrow walls: a laboratory experiment[J]. Pedobiologia, 2002, 46: 595-605.
[22]  Tuffen F, Eason W R, Scullion J. The effect of earthworms and arbuscular mycorrhizal fungi on growth of and32P transfer between Allium porrum plants[J]. Soil Biology and Biochemistry, 2002, 34: 1027-1036.
[23]  Wardle D A. The influence of biotic interactions on soil biodiversity[J]. Ecology Letters, 2006, 9: 870-886.
[24]  张卫信, 陈迪马, 赵灿灿. 蚯蚓在生态系统中的作用[J]. 生物多样性, 2007, 15(2): 142-153.
[25]  Hawkins H J, Johansen A, George E. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi[J]. Plant and Soil, 2000, 226: 175-185.
[26]  Wurst S, Dugassa-Gobena D, Langel R et al. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance[J]. New Phytologist, 2004, 163: 169-173.
[27]  Patron J C, Sanchez P, Brown G G et al. Phosphorus in soil and Brachialis decumbens plants as affected by the geophagous earthworm Pontoscolex corethrurus and P fertilization[J]. Pedobiologia, 1999, 43: 547-556.
[28]  Gormsen D, Olsson P A, Hedlund K. The influence of collembolans and earthworms on AM fungal mycelium[J]. Applied Soil Ecology, 2004, 27: 211-220.
[29]  Johansen A, Jakobsen I, Jensen E S. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels[J]. Plant and Soil, 1994, 160: 1-9.
[30]  Ravnskov S, Larsen J, Olsson P A et al. Effects of various organic compounds on growth and phosphorous uptake of an arbuscular mycorrhizal fungus[J]. New Phytologist, 1999, 141: 517-524.
[31]  Eisenhauer N, Knig S, Alexander C W et al. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated[J]. Soil Biology and Biochemistry, 2009, 41: 561-567.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133