全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

切换网络下时变线性多智能体系统的指数同步

DOI: 10.16383/j.aas.2015.c140912, PP. 1528-1532

Keywords: 时变线性多智能体系统,指数同步,协议,矩阵无穷乘积

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究切换网络下时变连续线性多智能体系统的同步问题.在智能体动态满足一致完全可控性条件下,设计出同步协议.通过将多智能体系统同步问题表示为矩阵无穷乘积形式并论证矩阵无穷乘积指数收敛到0,给出了多智能体系统指数同步结论.最后以仿真实例验证本文结论.

References

[1]  Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988 -1001
[2]  Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2004, 50(5): 655 -661
[3]  Liu Zhi-Xin, Guo Lei. Connectivity and synchronization of the Vicsek model. Science China: Information Sciences, 2007, 37(8): 979-988 (刘志新, 郭雷. Vicsek 模型的连通与同步. 中国科学E辑: 信息科学, 2007, 37(8): 979-988)
[4]  Chen Yang-Zhou, Ge Yan-Rong, Zhang Ya-Xiao. Partial stability approach to consensus problem of linear multi-agent systems. Acta Automatica Sinica, 2014, 40(11): 2573-2583 (陈阳舟, 盖彦荣, 张亚霄. 线性多智能体系统一致性问题的部分稳定性方法. 自动化学报, 2014, 40(11): 2573-2583)
[5]  Li Z K, Ren W, Liu X D, Fu M Y. Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Transactions on Automatic Control, 2013, 58(7): 1786-1791
[6]  Zhou B, Xu C C, Duan G R. Distributed and truncated reduced-order observer based output feedback consensus of multi-agent systems. IEEE Transactions on Automatic Control, 2014, 59(8): 2264-2270
[7]  Cao Xi-Bin, Guo Hai-Bo, Zhang Shi-Jie. Information topology-independent consensus criteria for second-order systems under directed graph. Acta Automatica Sinica, 2013, 39(7): 995-1002 (曹喜滨, 郭海波, 张世杰. 基于有向图的信息拓扑独立的二阶系统一致性判据. 自动化学报, 2013, 39(7): 995-1002)
[8]  Ni W, Cheng D Z. Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems and Control Letters, 2010, 59(3): 209-217
[9]  Su Y F, Huang J. Stability of a class of linear switching systems with applications to two consensus problems. IEEE Transactions on Automatic Control, 2012, 57(6): 1420- 1430
[10]  Tuna S E. Sufficient conditions on observability Grammian for synchronization in arrays of coupled linear time-varying systems. IEEE Transactions on Automatic Control, 2010, 55(11): 2586-2590
[11]  Yang T, Meng Z Y, Shi G D, Hong Y G, Johansson K H. Synchronization for multi-agent systems under directed switching topologies [Online], available: http://arxiv.org/abs/ 1401.6541v1, January 25, 2014
[12]  Rugh W J. Linear System Theory (2nd edition). Upper Saddle River, New Jersey: Prentice-Hall, Inc., 1996. 142-148
[13]  Huang Lin. Stability Theory. Beijing: Beijing University Press, 1992. 290-295 (黄琳. 稳定性理论. 北京: 北京大学出版社, 1992. 290-295)
[14]  Kern G. Uniform controllability of a class of linear time-varying systems. IEEE Transactions on Automatic Control, 1982, 27(1): 208-210
[15]  Mohar B. Eigenvalues, diameter, and mean distance in graphs. Graphs and Combinatorics, 1991, 7(1): 53-64
[16]  Cheng D, Guo L, Lin Y, Wang Y. Stabilization of switched linear systems. IEEE Transactions on Automatic Control, 2005, 50(5): 661-666

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133