全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Accuracy of Fall Prediction in Parkinson Disease: Six-Month and 12-Month Prospective Analyses

DOI: 10.1155/2012/237673

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. We analyzed the ability of four balance assessments to predict falls in people with Parkinson Disease (PD) prospectively over six and 12 months. Materials and Methods. The BESTest, Mini-BESTest, Functional Gait Assessment (FGA), and Berg Balance Scale (BBS) were administered to 80 participants with idiopathic PD at baseline. Falls were then tracked for 12 months. Ability of each test to predict falls at six and 12 months was assessed using ROC curves and likelihood ratios (LR). Results. Twenty-seven percent of the sample had fallen at six months, and 32% of the sample had fallen at 12 months. At six months, areas under the ROC curve (AUC) for the tests ranged from 0.8 (FGA) to 0.89 (BESTest) with LR+ of 3.4 (FGA) to 5.8 (BESTest). At 12 months, AUCs ranged from 0.68 (BESTest, BBS) to 0.77 (Mini-BESTest) with LR+ of 1.8 (BESTest) to 2.4 (BBS, FGA). Discussion. The various balance tests were effective in predicting falls at six months. All tests were relatively ineffective at 12 months. Conclusion. This pilot study suggests that people with PD should be assessed biannually for fall risk. 1. Introduction Postural instability is a common cause of falls in people with Parkinson disease (PD) [1]. In contrast to community-dwelling adults over age 65, approximately one-third of whom report falling each year [2], up to 70% of individuals with PD fall once annually, while 50% fall twice or more in a one year period [3, 4]. Falls lead to a myriad of complications [5] that can affect not only physical health, but also the psychological health of the individual. Hip fracture and head trauma are two of the most common physical problems incurred by an individual with PD following a fall [6], while the psychological complications include fear of falling [7, 8] and reduced quality of life [9]. Such fall-related complications are associated with substantial economic costs [10, 11] and indicate an urgent need to identify and protect those individuals at the greatest risk. Despite the relatively high prevalence of falls in the PD population, accurate and useful methods for predicting an impending future fall, especially during the early stages of the disease, remain elusive. Fall history, a well-known fall risk factor among older adults [12], has a limited utility as a solitary predictive indicator. Although a meta-analysis of prospective studies of falling in PD found that 57% of individuals who had a history of falls in the past year fell during a 3-month surveillance period, so did 21% of individuals with no history of falls [13]. Moreover, fall incidence

References

[1]  M. Rudzińska, S. Bukowczan, K. Banaszkiewicz, J. Stozek, K. Zajdel, and A. Szczudlik, “Causes and risk factors of falls in patients with Parkinson's disease,” Neurologia i Neurochirurgia Polska, vol. 42, no. 3, pp. 216–222, 2008.
[2]  L. Z. Rubenstein and K. R. Josephson, “Falls and their prevention in elderly people: what does the evidence show?” Medical Clinics of North America, vol. 90, no. 5, pp. 807–824, 2006.
[3]  B. H. Wood, J. A. Bilclough, A. Bowron, and R. W. Walker, “Incidence and prediction of falls in Parkinson's disease: a prospective multidisciplinary study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 6, pp. 721–725, 2002.
[4]  Y. A. M. Grimbergen, M. Munneke, and B. R. Bloem, “Falls in Parkinson's disease,” Current Opinion in Neurology, vol. 17, no. 4, pp. 405–415, 2004.
[5]  G. K. Kerr, C. J. Worringham, M. H. Cole, P. F. Lacherez, J. M. Wood, and P. A. Silburn, “Predictors of future falls in Parkinson disease,” Neurology, vol. 75, no. 2, pp. 116–124, 2010.
[6]  L. J. Melton, C. L. Leibson, S. J. Achenbach et al., “Fracture risk after the diagnosis of Parkinson's disease: influence of concomitant dementia,” Movement Disorders, vol. 21, no. 9, pp. 1361–1367, 2006.
[7]  B. R. Bloem, Y. A. M. Grimbergen, M. Cramer, M. Willemsen, and A. H. Zwinderman, “Prospective assessment of falls in Parkinson's disease,” Journal of Neurology, vol. 248, no. 11, pp. 950–958, 2001.
[8]  A. L. Adkin, J. S. Frank, and M. S. Jog, “Fear of falling and postural control in Parkinson's disease,” Movement Disorders, vol. 18, no. 5, pp. 496–502, 2003.
[9]  D. H. Romero and G. E. Stelmach, “Changes in postural control with aging and Parkinson's disease,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 2, pp. 27–31, 2003.
[10]  W. E. Bacon, “Secular trends in hip fracture occurrence and survival: age and sex differences,” Journal of Aging and Health, vol. 8, no. 4, pp. 538–553, 1996.
[11]  J. A. Stevens, P. S. Corso, E. A. Finkelstein, and T. R. Miller, “The costs of fatal and non-fatal falls among older adults,” Injury Prevention, vol. 12, no. 5, pp. 290–295, 2006.
[12]  J. T. Chang and D. A. Ganz, “Quality indicators for falls and mobility problems in vulnerable elders,” Journal of the American Geriatrics Society, vol. 55, no. 2, pp. S327–S334, 2007.
[13]  R. M. Pickering, Y. A. M. Grimbergen, U. Rigney et al., “A meta-analysis of six prospective studies of falling in Parkinson's disease,” Movement Disorders, vol. 22, no. 13, pp. 1892–1900, 2007.
[14]  F. B. Horak, D. Dimitrova, and J. G. Nutt, “Direction-specific postural instability in subjects with Parkinson's disease,” Experimental Neurology, vol. 193, no. 2, pp. 504–521, 2005.
[15]  L. E. Dibble, J. Christensen, D. J. Ballard, and K. B. Foreman, “Diagnosis of fall risk in Parkinson disease: an analysis of individual and collective clinical balance test interpretation,” Physical Therapy, vol. 88, no. 3, pp. 323–332, 2008.
[16]  K. B. Foreman, O. Addison, H. S. Kim, and L. E. Dibble, “Testing balance and fall risk in persons with Parkinson disease, an argument for ecologically valid testing,” Parkinsonism and Related Disorders, 2011.
[17]  M. D. Latt, S. R. Lord, J. G. L. Morris, and V. S. C. Fung, “Clinical and physiological assessments for elucidating falls risk in Parkinson's disease,” Movement Disorders, vol. 24, no. 9, pp. 1280–1289, 2009.
[18]  M. E. Tinetti, “Performance-orientated assessment of mobility problems in elderly patients,” Journal of the American Geriatrics Society, vol. 34, no. 2, pp. 119–126, 1986.
[19]  K. Berg, S. Wood-Dauphinee, J. I. Williams, and D. Gayton, “Measuring balance in the elderly: preliminary development of an instrument,” Physiotherapy Canada, vol. 41, no. 6, pp. 304–311, 1989.
[20]  D. Podsiadlo and S. Richardson, “The timed “Up and Go”: a test of basic functional mobility for frail elderly persons,” Journal of the American Geriatrics Society, vol. 39, no. 2, pp. 142–148, 1991.
[21]  D. M. Wrisley, G. F. Marchetti, D. K. Kuharsky, and S. L. Whitney, “Reliability, internal consistency, and validity of data obtained with the functional gait assessment,” Physical Therapy, vol. 84, no. 10, pp. 906–918, 2004.
[22]  F. B. Horak, D. M. Wrisley, and J. Frank, “The balance evaluation systems test (BESTest) to differentiate balance deficits,” Physical Therapy, vol. 89, no. 5, pp. 484–498, 2009.
[23]  A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with parkinson disease who fall,” Physical Therapy, vol. 91, no. 1, pp. 102–113, 2011.
[24]  F. Franchignoni, F. Horak, M. Godi, A. Nardone, and A. Giordano, “Using psychometric techniques to improve the balance evaluation systems test: the mini-bestest,” Journal of Rehabilitation Medicine, vol. 42, no. 4, pp. 323–331, 2010.
[25]  L. E. Dibble and M. Lange, “Predicting falls in individuals with Parkinson disease: a reconsideration of clinical balance measures,” Journal of Neurologic Physical Therapy, vol. 30, no. 2, pp. 60–67, 2006.
[26]  M. R. Landers, A. Backlund, J. Davenport, J. Fortune, S. Schuerman, and P. Altenburger, “Postural instability in idiopathic parkinson's disease: discriminating fallers from nonfallers based on standardized clinical measures,” Journal of Neurologic Physical Therapy, vol. 32, no. 2, pp. 56–61, 2008.
[27]  L. E. Dibble, J. T. Cavanaugh, G. M. Earhart, T. D. Ellis, M. P. Ford, and K. B. Foreman, “Charting the progression of disability in parkinson disease: study protocol for a prospective longitudinal cohort study,” BMC Neurology, vol. 10, article 110, 2010.
[28]  K. O. Berg, S. L. Wood-Dauphinee, J. I. Williams, and B. Maki, “Measuring balance in the elderly: validation of an instrument,” Canadian Journal of Public Health, vol. 83, no. 2, pp. S7–S11, 1992.
[29]  L. I. I. K. Lim, E. E. H. Van Wegen, C. J. T. De Goede et al., “Measuring gait and gait-related activities in Parkinson's patients own home environment: a reliability, responsiveness and feasibility study,” Parkinsonism and Related Disorders, vol. 11, no. 1, pp. 19–24, 2005.
[30]  A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Utility of the mini-BESTest, BESTest, and BESTest sections for balance assessments in individuals with Parkinson disease,” Journal of Neurologic Physical Therapy, vol. 35, no. 2, pp. 90–97, 2011.
[31]  C. G. Goetz, S. Fahn, P. Martinez-Martin et al., “Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan,” Movement Disorders, vol. 22, no. 1, pp. 41–47, 2007.
[32]  C. G. Goetz, B. C. Tilley, S. R. Shaftman et al., “Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results,” Movement Disorders, vol. 23, no. 15, pp. 2129–2170, 2008.
[33]  A. K. Akobeng, “Understanding diagnostic tests 3: receiver operating characteristic curves,” Acta Paediatrica, vol. 96, no. 5, pp. 644–647, 2007.
[34]  J. J. Deeks and D. G. Altman, “Diagnostic tests 4: likelihood ratios,” British Medical Journal, vol. 329, no. 7458, pp. 168–169, 2004.
[35]  M. Greiner, D. Pfeiffer, and R. D. Smith, “Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests,” Preventive Veterinary Medicine, vol. 45, no. 1-2, pp. 23–41, 2000.
[36]  J. Hintze, NCSS, NCSS, LLC, Kaysville, Utah, 2009.
[37]  E. M. Cheng, S. Tonn, R. Swain-Eng, S. A. Factor, W. J. Weiner, and C. T. Bever, “Quality improvement in neurology: AAN Parkinson disease quality measures: report of the Quality Measurement and Reporting Subcommittee of the American Academy of Neurology,” Neurology, vol. 75, no. 22, pp. 2021–2027, 2010.
[38]  A. C. Dennison, J. V. Noorigian, K. M. Robinson et al., “Falling in Parkinson disease: identifying and prioritizing risk factors in recurrent fallers,” American Journal of Physical Medicine and Rehabilitation, vol. 86, no. 8, pp. 621–632, 2007.
[39]  S. R. Cummings, M. C. Nevitt, and S. Kidd, “Forgetting falls. The limited accuracy of recall of falls in the elderly,” Journal of the American Geriatrics Society, vol. 36, no. 7, pp. 613–616, 1988.
[40]  S. E. Lamb, E. C. J?rstad-Stein, K. Hauer, and C. Becker, “Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus,” Journal of the American Geriatrics Society, vol. 53, no. 9, pp. 1618–1622, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133