全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

中国科学家在解析独脚金内酯调控水稻株型的分子机制研究中取得突破性进展

DOI: 10.11983/CBB15126, PP. 407-411

Keywords: 独脚金内酯,信号途径,水稻,分蘖,株型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?阐明植物激素作用的分子机理一直是植物学研究的前沿和热点。如何调控作物的株型等重要农艺性状是绿色革命的核心内容。最近,中国科学家在解析新型植物激素独脚金内酯的信号途径和阐明独脚金内酯调控水稻(Oryzasativa)株型的分子机制等方面所取得的重大原创成果入选“2014年度中国科学十大进展”。

References

[1]  11 Cook CE, Whichard LP, Wall M, Egley GH, Coggon P, Luhan PA, McPhail AT (1972). Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed ( Striga lutea ). J Am Chem Soc 94, 6198-6199.
[2]  12 Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008). Strigolactone inhibition of shoot branching. Nature 455, 189-194.
[3]  13 Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Kazuo Shinozaki K, Herrera-Estrella L, Tran LP (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111, 851-856.
[4]  14 Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012). DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22, 2032.
[5]  15 Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005). Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46, 79-86.
[6]  16 Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu EH, Wang Y, Li J (2013). DWARF 53 acts as a repressor of strigolactone signaling in rice. Nature 504, 401-405.
[7]  17 Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42, 541-544.
[8]  18 Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O (2014). Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol 166, 384-395.
[9]  19 Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003). Control of tillering in rice. Nature 422, 618-621.
[10]  20 Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009). DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21, 1512-1525.
[11]  21 Liu Q, Shen G, Peng K, Huang Z, Tong J, Kabir MH, Wang J, Zhang J, Qin G, Xiao L (2015). A T-DNA insertion mutant Osmtd1 was altered in architecture by upregulating microRNA156f in rice. J Integr Plant Biol doi:10.1111/jipb.12340
[12]  22 Müller D, Leyser O (2011). Auxin, cytokinin and the control of shoot branching. Ann Bot 107, 1203-1212.
[13]  23 Nakamura H, Xue Y, Miyakawa T, Hou F, Qin H, Fukui K, Shi X, Ito E, Ito S, Park S, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013). Molecular mechanism of strigolactone perception by DWA- RF14. Nat Commun 4, 3613.
[14]  24 Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana . Proc Natl Acad Sci USA 108, 8897-8902.
[15]  25 Qi Z, Xiong L (2013). Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. J Integr Plant Biol 55, 1119-1135.
[16]  26 Sang D, Chen D, Liu G, Liang Y, Huang L, Meng X, Chu J, Sun X, Dong G, Yuan Y, Qian Q, Li J, Wang Y (2014). Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc Natl Acad Sci USA 111, 11199-111204.
[17]  27 Smith SM (2013). Witchcraft and destruction. Nature 504, 384-385.
[18]  28 Stirnberg P, van De Sande K, Leyser HM (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131-1141.
[19]  29 Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014). Strigolactones are involved in phosphate- and nitrate-defiiency-induced root development and auxin transport in rice. J Exp Bot 65, 6735- 6746.
[20]  30 Takeda T, Suwa Y, Suzuki M, Kitano H, Uequchi-Tanaka M, Ashikari M, Uequchi C (2003). The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33, 513-520.
[21]  31 Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, TakedaKamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 95-200.
[22]  32 Wang Y, Li J (2011). Branching in rice. Curr Opin Plant Biol 14, 94-99.
[23]  33 Xie K, Wu C, Xiong L (2006). Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and micro- RNA156 in rice. Plant Physiol 142, 280-293.
[24]  34 Xu M, Zhu L, Shou HX, Wu P (2005). A PIN1 family gene, OsPIN1 , involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46, 1674-1681.
[25]  39 Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48, 687-698.
[26]  40 Zwanenburg B, Pospisil T (2013). Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6, 38-62.
[27]  1 许智宏, 薛红卫 (2012). 植物激素作用的分子机理. 上海: 上海科学出版社.
[28]  2 Akiyama K, Matsuzaki K, Hayashi H (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827.
[29]  3 Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007). DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51, 1019-1029.
[30]  4 Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009). d14 , a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50, 1416-1424.
[31]  5 Beveridge CA, Dun EA, Rameau C (2009). Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol 151, 985-990.
[32]  6 Beveridge CA, Ross JJ, Murfet IC (1996). Branching in pea (Action of genes Rms3 and Rms4 ). Plant Physiol 110, 859-865.
[33]  7 Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007). Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12, 224-230.
[34]  8 Chen Z, Gao X, Zhang J (2015). Alteration of osa-miR156e expression affects rice plant architecture and strigolactones (SLs) pathway. Plant Cell Rep , doi:10.1007/s00- 299-015-1740-x
[35]  9 Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubasa P (2014). Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis . Plant Cell 26, 1134-1150.
[36]  10 Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966). Germination of witchweed ( Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154, 1189-1190.
[37]  35 Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano HY (2012). Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J 70, 327-339.
[38]  36 Zhao L, Zhou XE, Wu Z, Yi W, Xu Y, Li S, Xu T, Liu Y, Chen R, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu HE (2013). Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone signaling DWARF14. Cell Res 23, 436-439.
[39]  37 Zheng Z, Germain AD, Chory J (2014). Unfolding the mysteries of strigolactone signaling. Mol Plant 7, 934- 936.
[40]  38 Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Nitzan S, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Kotomi U, Shinsaku I, Tadao A, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013). D14-SCFD3-dependent degradation of D53 regulates strigolactone signaling. Nature 504, 406-410.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133