全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

我国温带山地森林48种常见树种叶片重量-出叶强度的关系

DOI: 10.3724/SP.J.1259.2015.00234, PP. 234-240

Keywords: 叶干重,出叶强度,权衡关系,生活型,叶型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?叶片是植物的主要光合器官,其质量与数量的权衡关系体现植物对环境的适应策略。在全球气候变化的背景下,研究叶片质量与数量关系有助于理解植物对环境变化的响应趋势。该研究应用标准化主轴回归方法,探讨了我国温带山地森林中48个常见树种的单叶干重与出叶强度的权衡关系。结果表明,所有物种以及落叶阔叶林、常绿和落叶阔叶树种、单叶以及亚冠层阔叶树种的单叶干重与出叶强度表现为异速生长关系;针叶林、针阔混交林、常绿及落叶针叶树种、复叶以及冠层阔叶树种则表现为等速生长关系。研究结果表明,叶大小和出叶强度并无恒定的权衡关系。

References

[1]  1 任海, 彭少麟, 张祝平, 张文其 (1996). 鼎湖山季风常绿阔叶林林冠结构与冠层辐射研究. 生态学报 16, 174-179.
[2]  2 杨冬梅, 占峰, 张宏伟 (2012). 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系. 植物生态学报 36, 281-291.
[3]  3 Ackerly DD, Donoghue MJ (1998). Leaf size, sapling allometry, and Corner's rules: phylogeny and correlated evolution in maples ( Acer ). Am Nat 152, 767-791.
[4]  6 Bonser SP, Aarssen LW (1994). Plastic allometry in young sugar maple ( Acer saccharum ): adaptive responses to light availability. Am J Bot 81, 400-406.
[5]  24 R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Compu- ting, Vienna, Austria. URL http://www.R-project.org/.
[6]  25 Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. Bioscience 47, 235-242.
[7]  27 Stearns SC (1989). Trade-offs in life-history evolution. Funct Ecol 3, 259-268.
[8]  28 Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Ann Bot 97, 97-107.
[9]  29 Venable DL (1992). Size-number trade-offs and the variation of seed size with plant resource status. Am Nat 140, 287-304.
[10]  30 Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical J 44, 161-174.
[11]  31 Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biol Rev 81, 259-291.
[12]  33 Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33, 125-159.
[13]  35 Whitman T, Aarssen LW (2010). The leaf size/number trade-off in herbaceous angiosperms. J Plant Ecol 3, 49-58.
[14]  36 Wright IJ, Westoby M, Reich PB (2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J Ecol 90, 534-543.
[15]  37 Yang DM, Li GY, Sun SC (2008). The generality of leaf size versus number trade-off in temperate woody species. Ann Bot 102, 623-629.
[16]  4 Ackerly DD, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130, 449-457.
[17]  5 Ackerly DD, Reich PB (1999). Convergence and corre- lations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot 86, 1272-1281.
[18]  7 Givnish TJ (1978). Ecological aspects of plant morphology: leaf form in relation to environment. Acta Biotheor 27, 83-142.
[19]  8 Givnish TJ (1987). Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106, 131-160.
[20]  9 Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves. Am Nat 110, 743-778.
[21]  10 Gleason HA, Cronquist A (1991). Manual of Vascular Plants of Northeastern United States and Adjacent Canada. New York: The New York Botanical Garden.
[22]  11 Jakobsson A, Eriksson O (2000). A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88, 494-502.
[23]  12 Jensen KH, Zwieniecki MA (2013). Physical limits to leaf size in tall trees. Phys Rev Lett 110, 018104.
[24]  13 Kleiman D, Aarssen LW (2007). The leaf size/number trade-off in trees. J Ecol 95, 376-382.
[25]  14 Li T, Deng JM, Wang GX, Cheng DL, Yu ZL (2009). Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats. Polish J Ecol 57, 659-667.
[26]  15 Milla R (2009). The leafing intensity premium hypothesis tested across clades, growth forms and altitudes. J Ecol 97, 972-983.
[27]  16 Moles AT, Falster DS, Leishman MR, Westoby M (2004). Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J Ecol 92, 384-396.
[28]  17 Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517-524.
[29]  18 Niinemets Ü (1998). Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs. Plant Ecol 134, 1-11.
[30]  19 Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007a). Do we underestimate the impor- tance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Ann Bot 100, 283-303.
[31]  20 Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytol 171, 91-104.
[32]  21 Niinemets Ü, Portsmuth A, Tobias M (2007b). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Funct Ecol 21, 28- 40.
[33]  22 Parkhurst DF, Loucks OL (1972). Optimal leaf size in relation to environment. J Ecol 60, 505-537.
[34]  23 Poorter H, Pepin S, Rijkers T, De Jong Y, Evans JR, Körner C (2006). Construction costs, chemical composi- tion and payback time of high-and low-irradiance leaves. J Exp Bot 57, 355-371.
[35]  26 Shipley B, Dion J (1992). The allometry of seed production in herbaceous angiosperms. Am Nat 139, 467-483.
[36]  32 Watson MA, Casper BB (1984). Morphogenetic constraints on patterns of carbon distribution in plants. Annu Rev Ecol Syst 15, 233-258.
[37]  34 Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621-628.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133