全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

放牧对草原植物功能性状及其权衡关系的调控

DOI: 10.3724/SP.J.1259.2015.00159, PP. 159-170

Keywords: 功能性状,放牧,草原,性状权衡

Full-Text   Cite this paper   Add to My Lib

Abstract:

?放牧是草原生态系统利用与管理的主要方式;而过度放牧导致的草原退化和生产力衰减问题已成为当前生产及理论上的一个棘手难题。近年来,植物功能性状及其权衡等新理论与方法的引入,为解析放牧对草原的影响机制提供了新工具,成为草原生态学的一个新兴领域,但目前尚缺乏系统的回顾总结。该文综述了近年来国内外关于草原植物功能性状对放牧的响应及其权衡关系的研究进展,综合分析了植物性状权衡变化的主要特征、成因与机制,针对学界关于放牧下植物矮化型变机制的“避牧适应假说”与“生长受阻假说”的争论,提出了下一步需重点关注的科学问题。

References

[1]  10 梁金华 (2012). 内蒙古荒漠化草原四种植物的根系构型特点及其生态适应性研究. 硕士论文. 呼和浩特: 内蒙古农业大学.
[2]  11 刘贤赵, 李朝奎, 徐树建, 王文文, 王国安, 赵丽丽 (2011). 中国北方干湿气候区C 3 草本植物δ 13 C值及其与湿润指数的关系. 植物学报 46, 675-687.
[3]  12 刘钟龄, 王炜, 郝敦元, 梁存柱 (2002). 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境 16, 84-91.
[4]  13 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报 31, 150-165.
[5]  14 任继周 (2004). 草地农业生态系统通论. 合肥: 安徽教育出版社.
[6]  15 任继周, 胡自治, 牟新待, 张普金 (1980). 草原的综合顺序分类法及其草原发生学意义. 中国草原 2, 12-24, 38.
[7]  16 孙宗玖, 朱进忠, 张鲜花, 郑伟, 靳瑰丽, 古伟容 (2013). 短期放牧强度对昭苏草甸草原土壤全量氮磷钾的影响. 草地学报 21, 895-901.
[8]  17 王炜, 梁存柱, 刘钟龄, 郝敦元 (2000). 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报 24, 268-274.
[9]  18 周艳松, 王立群 (2011). 星毛委陵菜根系构型对草原退化的生态适应. 植物生态学报 35, 490-499.
[10]  19 Acosta-Gallo B, Casado MA, Montalvo J, Pineda FD (2011). Allometric patterns of below-ground biomass in Mediterranean grasslands. Plant Biosyst 145, 584-595.
[11]  20 Adler PB, Milchunas DG, Lauenroth WK, Sala OE, Burke IC (2004). Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J Appl Ecol 41, 653- 663.
[12]  21 Adler PB, Milchunas DG, Sala OE, Burke IC, Lauenroth WK (2005). Plant traits and ecosystem grazing effects: comparison of U.S. sagebrush steppe and Patagonian steppe. Ecol Appl 15, 774-792.
[13]  22 Bai YF, Wu JG, Clark CM, Pan QM, Zhang LX, Chen SP, Wang QB, Han XG (2012). Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient. J Appl Ecol 49, 1204- 1215.
[14]  30 Cruz P, De Quadros FLF, Theau JP, Frizzo A, Jouany C, Duru M, Carvalho PCF (2010). Leaf traits as functional descriptors of the intensity of continuous grazing in native grasslands in the south of Brazil. Rangel Ecol Manag 63, 350-358.
[15]  31 Damhoureyeh SA, Hartnett DC (2002). Variation in grazing tolerance among three tallgrass prairie plant species. Am J Bot 89, 1634-1643.
[16]  32 De Deyn GB, Cornelissen JHC, Bardgett RD (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11, 516-531.
[17]  33 Díaz S, Acosta A, Cabido M (1992). Morphological analysis of herbaceous communities under different grazing regimes. J Veg Sci 3, 689-696.
[18]  34 Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing―a global synthesis. Glob Chang Biol 13, 313-341.
[19]  35 Díaz S, Noy-Meir I, Cabido M (2001). Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol 38, 497-508.
[20]  36 Evju M, Halvorsen R, Rydgren K, Austrheim G, Mysterud A (2010). Interactions between local climate and grazing determine the population dynamics of the small herb Viola biflora . Oecologia 163, 921-933.
[21]  37 Fenton EW (1931). The influence of sectional grazing and manuring on the Flora of Grassland. J Ecol 19, 75-97.
[22]  38 Frank DA (2008). Ungulate and topographic control of nitrogen: phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates. Oikos 117, 591-601.
[23]  39 Fu YB, Thompson D, Willms W, Mackay M (2005). Long- term grazing effects on genetic variability in mountain rough fescue. Rangel Ecol Manag 58, 637-642.
[24]  49 Klumpp K, Fontaine S, Attard E, Le Roux X, Gleixner G, Soussana JF (2009). Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J Ecol 97, 876-885.
[25]  50 Koerner SE, Collins SL, Blair JM, Knapp AK, Smith MD (2014). Rainfall variability has minimal effects on grassland recovery from repeated grazing. J Veg Sci 25, 36- 44.
[26]  51 Kooijman A, Smit A (2001). Grazing as a measure to reduce nutrient availability and plant productivity in acid dune grasslands and pine forests in The Netherlands. Ecol Eng 17, 63-77.
[27]  52 Kula AAR, Hartnett DC, Wilson GWT (2005). Effects of mycorrhizal symbiosis on tallgrass prairie plant-herbivore interactions. Ecol Lett 8, 61-69.
[28]  53 Laliberté E, Shipley B, Norton DA, Scott D (2012). Which plant traits determine abundance under long-term shifts in soil resource availability and grazing intensity? J Ecol 100, 662-677.
[29]  54 Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99, 135-147.
[30]  55 Louault F, Pillar VD, Aufrère J, Garnier E, Soussana JF (2005). Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16, 151-160.
[31]  56 McKinney KK, Fowler NL (1991). Genetic adaptations to grazing and mowing in the unpalatable grass Cenchrus incertus . Oecologia 88, 238-242.
[32]  57 McInenly LE, Merrill EH, Cahill JF, Juma NG (2010). Festuca campestris alters root morphology and growth in response to simulated grazing and nitrogen form. Funct Ecol 24, 283-292.
[33]  58 McIntire EJB, Hik DS (2002). Grazing history versus current grazing: leaf demography and compensatory growth of three alpine plants in response to a native herbivore ( Ochotona collaris ). J Ecol 90, 348-359.
[34]  59 Miao HX, Chen SP, Chen JQ, Zhang WL, Zhang P, Wei L, Han XG, Lin GH (2009). Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia step- pes. Agric Forest Meteor 149, 1810-1819.
[35]  60 Milchunas DG, Vandever MW (2013). Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland. J Arid Environ 92, 81-88.
[36]  61 Moreno García CA, Schellberg J, Ewert F, Brüser K, Canales-Prati P, Linstädter A, Oomen RJ, Ruppert JC, Perelman SB (2014). Response of community-aggre- gated plant functional traits along grazing gradients: insights from African semi-arid grasslands. Appl Veg Sci 17, 470-481.
[37]  62 Niu KC, Choler P, Zhao BB, Du GZ (2009). The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands. Funct Ecol 23, 274-283.
[38]  63 Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011). Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Glob Chang Biol 17, 1073-1082.
[39]  64 Osem Y, Perevolotsky A, Kigel J (2004). Site productivity and plant size explain the response of annual species to grazing exclusion in a Mediterranean semi-arid rangeland. J Ecol 92, 297-309.
[40]  65 Patty L, Halloy SRP, Hiltbrunner E, Körner C (2010). Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora 205, 695-703.
[41]  66 Peng Y, Jiang GM, Liu XH, Niu SL, Liu MZ, Biswas DK (2007). Photosynthesis, transpiration and water use efficiency of four plant species with grazing intensities in Hunshandak Sandland, China. J Arid Environ 70, 304- 315.
[42]  67 Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pig- liucci M (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9, 981-993.
[43]  68 Roiloa SR, Hutchings MJ (2013). The effects of physiological integration on biomass partitioning in plant modu- les: an experimental study with the stoloniferous herb Glechoma hederacea . Plant Ecol 214, 521-530.
[44]  69 Schleip I, Lattanzi FA, Schnyder H (2013). Common leaf life span of co-dominant species in a continuously grazed temperate pasture. Basic Appl Ecol 14, 54-63.
[45]  70 Schönbach P, Wan HW, Gierus M, Bai YF, Müller K, Lin LJ, Susenbeth A, Taube F (2011). Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant Soil 340, 103-115.
[46]  71 Schwinning S, Sala OE, Loik ME, Ehleringer JR (2004). Thresholds, memory, and seasonality: understanding pul- se dynamics in arid/semi-arid ecosystems. Oecologia 141, 191-193.
[47]  72 Shen HH, Wang SP, Tang YH (2013). Grazing alters warming effects on leaf photosynthesis and respiration in Gentiana straminea , an alpine forb species. J Plant Ecol 6, 418-427.
[48]  73 Singer FJ, Schoenecker KA (2003). Do ungulates accelerate or decelerate nitrogen cycling? Forest Ecol Manag 181, 189-204.
[49]  74 Su YZ, Li YL, Cui JY, Zhao ZW (2005). Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena 59, 267-278.
[50]  75 Suzuki RO, Suzuki SN (2011). Facilitative and competitive effects of a large species with defensive traits on a grazing-adapted, small species in a long-term deer grazing habitat. Plant Ecol 212, 343-351.
[51]  76 Verón SR, Paruelo JM, Oesterheld M (2011). Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem. Oecologia 165, 501-510.
[52]  80 Wolf B, Zheng XH, Brüggemann N, Chen WW, Dannenmann M, Han XG, Sutton MA, Wu HH, Yao ZS, Butterbach-Bahl K (2010). Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 464, 881-884.
[53]  81 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature 428, 821-827.
[54]  82 Zheng SX, Ren HY, Lan ZC, Li WH, Wang KB, Bai YF (2010). Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences 7, 1117-1132.
[55]  83 Zhou Z, Sun OJ, Huang J, Gao Y, Han X (2006). Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Funct Ecol 20, 753-762.
[56]  1 安慧 (2012). 放牧干扰对荒漠草原植物叶性状及其相互关系的影响. 应用生态学报 23, 2991-2996.
[57]  2 敖伊敏 (2012). 不同围封年限下典型草原土壤生态化学计量特征研究. 硕士论文. 呼和浩特: 内蒙古师范大学. pp. 24- 51.
[58]  3 陈海军 (2011). 荒漠草原主要植物种群繁殖性状及化学计量特征对载畜率的响应. 博士论文. 呼和浩特: 内蒙古农业大学. pp. 85-97.
[59]  4 范国艳, 张静妮, 张永生, 李刚, 王琦, 杨殿林 (2010). 放牧对贝加尔针茅草原植被根系分布和土壤理化特征的影响. 生态学杂志 29, 1715-1721.
[60]  5 高乐旋, 陈家宽, 杨继 (2008). 表型可塑性变异的生态-发育机制及其进化意义. 植物分类学报 46, 441-451.
[61]  6 何茂, 黄建辉 (2010). 放牧对小叶锦鸡儿种子产量的影响. 植物学报 45, 59-65.
[62]  7 侯向阳, 尹燕亭, 丁勇 (2011). 中国草原适应性管理研究现状与展望. 草业学报 20, 262-269.
[63]  8 李博 (1962). 内蒙古地带性植被的基本类型及其生态地理规律. 内蒙古大学学报(自然科学版) (2), 103-128.
[64]  9 李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报 38, 440-451.
[65]  23 Bardgett RD, Streeter TC, Cole L, Hartley IR (2002). Linkages between soil biota, nitrogen availability, and plant nitrogen uptake in a mountain ecosystem in the Scottish Highlands. Appl Soil Ecol 19, 121-134.
[66]  24 Barger NN, Ojima DS, Belnap J, Wang SP, Wang YF, Chen ZZ (2004). Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian grassland. Rangel Ecol Manag 57, 613-619.
[67]  25 Bisigato AJ, Lopez Laphitz RM (2009). Ecohydrological effects of grazing-induced degradation in the Patagonian Monte, Argentina. Austral Ecol 34, 545-557.
[68]  26 Carmona D, Lajeunesse MJ, Johnson MTJ (2011). Plant traits that predict resistance to herbivores. Funct Ecol 25, 358-367.
[69]  27 Chen SP, Bai YF, Lin GH, Liang Y, Han XG (2005). Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China. Photosynthetica 43, 559-565.
[70]  28 Cingolani AM, Posse G, Collantes MB (2005). Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands. J Appl Ecol 42, 50-59.
[71]  29 Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998). Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280, 745-747.
[72]  40 Gao YZ, Giese M, Gao Q, Brueck H, Sheng LX, Yang HJ (2013). Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in Inner Mongolia grassland. PLoS One 8(9), e74841.
[73]  41 Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307, 41-50.
[74]  42 Gardner JL (1950). Effects of thirty years of protection from grazing in desert grassland. Ecology 31, 44-50.
[75]  43 Golluscio RA, Austin AT, Martínez GCG, Gonzalez-Polo M, Sala OE, Jackson RB (2009). Sheep grazing decreases organic carbon and nitrogen pools in the Patagonian steppe: combination of direct and indirect effects. Ecosystems 12, 686-697.
[76]  44 Golodets C, Sternberg M, Kigel J (2009). A community-level test of the leaf-height-seed ecology strategy scheme in relation to grazing conditions. J Veg Sci 20, 392-402.
[77]  45 Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H (2011). Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant Soil 340, 227-238.
[78]  46 Guo YJ, Han L, Li GD, Han JG, Wang GL, Li ZY, Wilson B (2012). The effects of defoliation on plant community, root biomass and nutrient allocation and soil chemical properties on semi-arid steppes in northern China. J Arid Environ 78, 128-134.
[79]  47 Harrison MT, Evans JR, Dove H, Moore AD (2012). Recovery dynamics of rainfed winter wheat after livestock grazing 1. Growth rates, grain yields, soil water use and water-use efficiency. Crop Pasture Sci 62, 947-959.
[80]  48 Klimešová J, Latzel V, de Bello F, van Groenendael JM (2008). Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia 80, 245-253.
[81]  77 Wang YD, Wang ZL, Wang HM, Guo CC, Bao WK (2012). Rainfall pulse primarily drives litterfall respiration and its contribution to soil respiration in a young exotic pine plantation in subtropical China. Can J For Res 42, 657- 666.
[82]  78 Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213-227.
[83]  79 Wesuls D, Oldeland J, Dray S (2012). Disentangling plant trait responses to livestock grazing from spatio-temporal variation: the partial RLQ approach. J Veg Sci 23, 98-113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133