全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
植物学报  2015 

基于MADS-box诱饵与蛋白质相互作用的拟南芥花瓣发育分子网络拓展

DOI: 10.11983/CBB14169, PP. 614-622

Keywords: 拟南芥,MADS-box,花瓣发育,蛋白质相互作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

?阐明花器官发育调控机理具重要的进化、发育和生态学意义。该文以拟南芥(Arabidopsisthaliana)花瓣发育为例,整合蛋白质互作、亚细胞定位、基因芯片和基因功能注释等数据库,通过组建蛋白质互作可信预测模型,获得拟南芥花瓣蛋白质互作网络,以含有MADS-box结构域蛋白为诱饵在网络中进行一级拓展,得到含38个蛋白质和67对互作的拓展网络。基于拓展网络,DAVID基因功能注释表明,多数蛋白质涉及的生物学过程与花发育调控相关;提取到19个候选四元互作,涉及ABCDE模型基因之外的8个基因,其中含MADS-box结构域的AGL16可能是B类基因新成员或其冗余;SEU、LUH、CHR4、CHR11、CHR17和AT3G04960为拟南芥花瓣AP1-AP3-PI-SEP四聚体的候选靶标基因。研究结果为深入解析拟南芥花瓣发育分子调控网络奠定了基础。

References

[1]  丛楠, 程治军, 万建民 (2007).控制花器官发育的ABCDE模型. 中国农学通报 23, 124-128.
[2]  胡丽芳, 金志强, 徐碧玉 (2005). MADS-box基因在果实发育,成熟过程中的作用. 分子植物育种 3, 415-420.
[3]  彭利红, 刘海燕, 唐启涛 (2012). 蛋白质相互作用预测方法研究进展. 计算机光盘软件与应用 18, 70-71.
[4]  沈艳, 刘战民, 尹京苑 (2010). 利用基因共表达网络分析蛋白质的相互作用. 生物信息学 8, 16-19.
[5]  于建涛, 郭茂祖, 蔡禄 (2007). 蛋白质相互作用及其网络预测方法研究进展. 电子学报 35, 1-7.
[6]  Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
[7]  Aytuna AS, Gursoy A, Keskin O (2005). Prediction of protein–protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21, 2850-2855.
[8]  Bock JR, Gough DA (2001). Predicting protein–protein interactions from primary structure. Bioinformatics 17, 455-460.
[9]  Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HL, Yang CH (2011). The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant Journal 68, 168-185.
[10]  Daraselia N, Yuryev A, Egorov S, Novichkova S, Nikitin A, Mazo I (2004). Extracting human protein interactions from MEDLINE using a full-sentence parser. Bioinformatics 20, 604-611.
[11]  De Folter S, Immink RGH., Kieffer M, Pa?enicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM (2005). Comprehensive interaction map of the Arabidopsis MADS box transcription factors. The Plant Cell Online 17, 1424-1433.
[12]  Gramzow L, Theissen G (2010). A hitchhiker’s guide to the MADS world of plants. Genome Biology 11, 214-224.
[13]  Immink RGH, Kaufmann K, Angenent GC (2010). The ‘ABC’ of MADS domain protein behaviour and interactions. Seminars in Cell & Developmental Biology 21, 87-93.
[14]  Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, Lange JB, Borst JW, Angenent GC (2009). SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biology 10, R24.
[15]  Irish VF (2010). The flowering of Arabidopsis flower development. The Plant Journal 61, 1014-1028.
[16]  Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009). Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proceedings of the National Academy of Sciences, USA 106, 22008-22013.
[17]  Noda K, Glover BJ, Linstead P, Martin C (1994). Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369, 661–664.
[18]  O’Maoileidigh DS, Graciet E, Wellmer F (2014). Gene networks controlling Arabidopsis thaliana flower development. New Phytologist 201, 16-30.
[19]  Pajoro A, Madrigal P, Muino JM, Matus JM, Jin J, Mecchia MA, Debernardi JM, Palatnik JF, Balazadeh S, Arif M, O’Maoileidigh DS, Wellmer F, Krajewski P, Riechmann JL, Angenent GC, Kaufmann K (2014). Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biology 15, R41.
[20]  Par enicová L, Folter SD, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM., Kater MM, Davies B (2003). Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis new openings to the MADS world. The Plant Cell Online 15, 1538-1551.
[21]  Sanchez-Corrales YE, Alvarez-Buylla ER, Mendoza L (2010). The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. Journal of Theoretical Biology 264, 971-983.
[22]  Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp RM, Ideker T (2005). Conserved patterns of protein interaction in multiple species. PNAS 102, 1974-1979.
[23]  Shen JW, Zhang J, Luo XM, Zhu WL, Yu KQ, Chen KX, Li YX, Jiang HL (2007). Predicting protein–protein interactions based only on sequences information. PNAS 104, 4337-4341.
[24]  Smaczniak C, Immink RGH, Muino M, Blanvillain R, Busscher M, Lange JB, Dinh QD, Liu SJ, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012). Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. PNAS 109, 1560-1565.
[25]  Srinivasasainagendra V, Page GP, Mehta T, Coulibaly I, Loraine AE (2008). CressExpress: a tool for large-scale mining of expression data from Arabidopsis. Plant Physiology 147, 1004-1016.
[26]  Valencia A, Pazos F (2002). Computational methods for the prediction of protein interactions. Current Opinion in Structural Biology 12, 368-373.
[27]  Wellmer F, Riechmann JL (2010). Gene networks controlling the initiation of flower development. Trends in Genetics 26, 519-527.
[28]  Whitney HM, Chittka L, Bruce TJ, Glover BJ (2009). Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Current Biology 19, 948–953.
[29]  Yang WL, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J (2010). A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proceedings of the National Academy of Sciences, USA 107, 12040-12045.
[30]  Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, Bisikirska B, Lefebvre C, Accili D, Hunter T, Maniatis T, Califano A, Honig B (2012). Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490, 556-560.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133