全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

仲氢诱导极化增强的核磁共振实验条件优化

DOI: 10.11938/cjmr20150308, PP. 470-480

Keywords: 仲氢诱导极化(PHIP),PASADENA,ALTADENA,液体磁共振,加氢反应

Full-Text   Cite this paper   Add to My Lib

Abstract:

仲氢诱导极化(ParahydrogenInducedPolarization,PHIP)技术能够极大地增强核磁共振信号,在化学、生物、医学等多方面具有广阔的应用前景.但在实际应用中,通过PHIP技术获得的核磁共振(NMR)信号增强倍数往往受到实际反应条件的影响.该文中以己炔的加氢反应为例,考察了氢气通入方式、反应温度和反应压强对PHIP实验中核磁共振信号增强倍数的影响.

References

[1]  Bonhoeffer K F, Harteck P. Experiments on para and ortho hydrogen[J]. Naturwissenschaften, 1929, 17(11): 182.
[2]  Bradshaw T W, Norris J O W. Observations on the use of a thermal conductivity cell to measure the para hydrogen concentration in a mixture of para and ortho hydrogen gas[J]. Rev Sci Instrum, 1987, 58(1): 83-85.
[3]  Jankowiak J T, Schwartz J M, Barrett P A. Advanced adsorbents for the separation of the ortho- and para-hydrogen spin isomers at cryogenic temperatures[J]. Adsorption, 2014, 20(1): 173-188.
[4]  Chen M J, Liao S H, Yang H C, et al. Nuclear magnetic resonance and imaging of hyperpolarized 3He using high-Tc superconducting quantum interference device in microtesla magnetic fields[J]. Chinese J Magn Reson, 2010, 27(3): 386-394
[5]  Li Hai-dong(李海东), Zhang Zhi-ying(张智颖), Han Ye-qing(韩叶清), et al. Lung MRI using hyperpolarized gases(超极化气体肺部磁共振成像)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(3): 307-320.
[6]  Bowers C R, Weitekamp D P. Parahydrogen and synthesis allow dramatically enhanced nuclear alignment[J]. J Am Chem Soc, 1987, 109(18): 5 541-5 542.
[7]  Eisenschmid T C, kirss R U, Deutsch P P, et al. Para hydrogen induced polarization in hydrogenation reactions[J]. J Am Chem Soc, 1987, 109(26): 8 089-8 091.
[8]  Pravica M G, Weitekamp D P. Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field[J]. Chem Phys Lett, 1988, 145(4): 255-258.
[9]  Adams R W, Duckett S B, Green R A, et al. A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization[J]. J Chem Phys, 2009, 131(19): 186.
[10]  Duckett S B, Newell C L, Eisenberg R. Observation of new intermediates in hydrogenation catalyzed by wilkinson's catalyst, RhCl(PPh3)3, using parahydrogen-induced polarization[J]. J Am Chem Soc, 1994, 116(23): 10 548-10 556.
[11]  Blazina D, Duckett S B, Dyson P J, et al. Catalytic hydrogenation by triruthenium clusters: A mechanistic study with parahydrogen-induced polarization[J]. Chem-Eur J, 2003, 9(5): 1 045-1 061.
[12]  Colebrooke S A, Duckett S B, Lohman J A B, et al. Hydrogenation studies involving halobis(phosphine)-rhodium(I) dimers: Use of parahydrogen induced polarisation to detect species present at low concentration[J]. Chem-Eur J, 2004, 10(10): 2 459-2 474.
[13]  Godard C, Duckett S B, Henry C, et al. New perspectives in hydroformylation: A para-hydrogen study[J]. Chem Commun, 2004, 16: 1 826-1 827.
[14]  Kuhn L T, Bargon J. Transfer of Parahydrogen-Induced Hyperpolarization to Heteronuclei[M]. Berlin: Springer-Verlag Berlin, 2007.
[15]  Shchepin R V, Coffey A M, Waddell K W, et al. Parahydrogen induced polarization of 1-13C-phospholactate-d2 for biomedical imaging with >30 000 000-fold NMR signal enhancement in water[J]. Anal Chem, 2014, 86(12): 5 601-5 605
[16]  Dechent J F, Buljubasich L, Laura M S, et al. Proton magnetic resonance imaging with para-hydrogen induced polarization[J]. Phys Chem Chem Phys, 2012, 14(7): 2 346-2 352.
[17]  Goldman M, Jóhannesson H, Axelsson O, et al. Hyperpolarization of 13C through order transfer from parahydrogen: A new contrast agent for MRI[J]. Magn Reson Imaging, 2005, 23(2): 153-157.
[18]  Goldman M, Jóhannesson H, Axelsson O, et al. Design and implementation of 13C hyper polarization from para-hydrogen, for new MRI contrast agents[J]. Comptes Rendus Chimie, 2006, 9(3, 4): 357-363.
[19]  Bhattacharya P, Chekmenev E Y, Perman W H, et al. Towards hyperpolarized 13C-succinate imaging of brain cancer[J]. J Magn Reson, 2007, 186(1): 150-155.
[20]  Gong Q X, Gordji-Nejad A, Blümich B, et al. Trace analysis by low-field NMR: Breaking the sensitivity limit[J]. Anal Chem, 2010, 82(17): 7 078-7 082.
[21]  Theis T, Ganssle P, Kervern G, et al. Parahydrogen-enhanced zero-field nuclear magnetic resonance[J]. Nat Phys, 2011, 7(7): 571-575.
[22]  Butler M C, Kervern G, Theis T, et al. Parahydrogen-induced polarization at zero magnetic field[J]. J Chem Phys, 2013, 138(23): 21.
[23]  Gl?ggler S, Colell J, Appelt S. Para-hydrogen perspectives in hyperpolarized NMR[J]. J Magn Reson, 2013, 235: 130-142.
[24]  Larsen C R, Erdogan G, Grotjahn D B. General catalyst control of the monoisomerization of 1-alkenes to trans-2-alkenes[J]. J Am Chem Soc, 2014, 136(4): 1 226-1 229.
[25]  Schwieger S, Herzog R, Wagner C, et al. Platina-β-diketones as catalysts for hydrosilylation and their reactivity towards hydrosilanes[J]. J Organomet Chem, 2009, 694(22): 3 548-3 558.
[26]  Barkemeyer J, Haake M, Bargon J. Hetero-NMR enhancement via parahydrogen labeling[J]. J Am Chem Soc, 1995, 117(10): 2 927-2 928.
[27]  Natterer J, Bargon J. Parahydrogen induced polarization[J]. Prog Nucl Mag Res Sp, 1997, 31(4): 293-315.
[28]  Roth M, Kindervater P, Raich H, et al. Continuous 1H and 13C signal enhancement in NMR spectroscopy and MRI using parahydrogen and hollow-fiber membranes[J]. Angew Chem Int Ed, 2010, 49(45): 8 358-8 362.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133