全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

藕莲根状茎表面的铁膜特性和成分分析

DOI: 10.11913/PSJ.2095-0837.2015.20244, PP. 244-250

Keywords: 藕莲,根状茎,铁膜特性,化学组成

Full-Text   Cite this paper   Add to My Lib

Abstract:

?以10个藕莲(NelumbonuciferaGaertn.)品种为材料,比较分析了其根状茎表面的铁膜厚度及化学组成。结果显示:总Fe含量最高的是‘尖头白荷’,其次是‘鄂莲6号’和‘温州山东藕’,最低的是‘鄂莲7号’和‘苏州花藕’;根状茎表面的铁膜中Fe(Ⅲ)和Fe(Ⅱ)分别占总Fe含量的64.1%~85.8%和14.2%~35.9%。扫描电子显微镜(SEM)观察发现,铁膜表面呈絮状或颗粒状;能谱分析(EDX)检测到铁膜中存在Fe、C、O、Al、Si,随着铁膜增厚还在‘尖头白荷’根状茎表面的铁膜中检测到K、P和Ca。本研究通过对藕莲根状茎表面的铁膜特性及成分比较,发现供试的10个品种中‘鄂莲7号’和‘苏州花藕’属于铁膜低沉积品种。

References

[1]  刁英, 韩延闯, 何建军, 王清章, 胡中立, 周明全. 莲藕研究进展[J]. 氨基酸和生物资源, 2004, 26(1): 8-11.
[2]  徐蝉, 胡美华, 郭得平. 浙江省水生蔬菜产业发展现状及展望[J]. 长江蔬菜, 2009(16): 106-109.
[3]  周俊辉, 孔祥伟, 黄政华. 莲藕除锈与保鲜的初步研究[J]. 江西农业学报, 2007, 19(3): 51-53.
[4]  程立宝, 李淑艳, 李岩, 尹静静, 陈学好, 李良俊. 莲藕根状茎膨大过程中淀粉合成相关基因的表达[J]. 中国农业科学, 2012, 45(16): 3330-3336.
[5]  杨美, 付杰, 向巧彦, 刘艳玲. 利用AFLP 分子标记技术构建花莲核心种质资源[J]. 中国农业科学, 2011, 44(15): 3193-3205.
[6]  许金蓉, 王清章, 何建军, 周明全, 胡中立. 莲(地下膨大茎)贮藏及其生理生化研究进展[J]. 氨基酸和生物资源, 2003, 25(2): 4-7.
[7]  刘冬碧, 陈防, 熊桂云, 巴瑞先, 张富林, 张继铭, 余延丰. 钾营养对莲藕产量形成和氮磷钾养分累积分配的影响[J]. 中国农业科学, 2010, 43(5): 978-985.
[8]  张长伟, 徐文娟, 王玉华, 叶月. 有机、无机肥对莲藕生长和品质的影响及施肥效益分析[J]. 中国农学通报, 2012, 28(7): 261-264.
[9]  Taylor GJ, Crowder AA. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants[J]. Am J Bot, 1983, 70(8):1254-1257.
[10]  鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000: 263-270.
[11]  Syu CH, Jiang PY, Huang HH, Chen WT, Lin ZH, Lee DY. Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter[J]. Soil Sci Plant Nut, 2013, 59(3): 463-471.
[12]  Xu B, Yu S. Root iron plaque formation and cha-racteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa)[J]. Ann Bot, 2013, 111(6): 1189-1195.
[13]  Feng H, Qian Y, Gallagher FJ, Wu MY, Zhang WG, Yu LZ, Zhu QZ, Zhang KW, Liu CJ, Tappero R. Lead accumulation and association with Fe on Typha latifolia root from an urban brown field site[J].Environ Sci Pollut R, 2013, 20(6): 3743-3750.
[14]  Batty LC, Baker AJM, Wheeler BD, Curtis CD. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel[J]. Ann Bot, 2000, 86(3): 647-653.
[15]  Kusel K, Chabbi A, Trinkwalter T. Microbial processes associated with roots of bulbous rush coated with iron plaques[J]. Microb Ecol, 2003, 46(3): 302-311.
[16]  Yang JX, Tam NFY, Ye ZH. Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation[J]. Plant Soil, 2014, 374(1-2): 815-828.
[17]  Wu C, Ye ZH, Li H, Wu SC, Deng D, Zhu YG, Wang MH. Do radial oxygen loss and external ae-ration affect iron plaque formation and arsenic accumulation and speciation in rice[J].J Exp Bot, 2012, 63(8): 2961-2970.
[18]  Li H, Ye ZH, Wei ZJ, Wong MH. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants[J]. Environ Pollut, 2011, 159(1): 30-37.
[19]  Laskov C, Horn O, Hupfer M. Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus[J].Aquat Bot, 2006, 84(4): 333-340.
[20]  Emerson D, Weiss JV, Megonigal JP. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants[J]. Appl Environ Microb, 1999, 65(6): 2758-2761.
[21]  Jia Y, Huang H, Chen Z, Zhu YG. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere[J].Environ Sci Technol, 2014, 48(2): 1001-1007.
[22]  Huang H, Zhu YG, Chen Z, Yin XX, Sun GX. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil[J].J Soil Sediments, 2012, 12(3): 402-410.
[23]  Lee CH, Hsieh YC, Lin TH, Lee DY. Iron plaque formation and its effect on arsenic uptake by diffe-rent genotypes of paddy rice[J]. Plant Soil, 2013, 363(1-2): 231-241.
[24]  Liu WJ, Zhu YG, Smith FA, Smith SE. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture[J]. J Exp Bot, 2004, 55(403): 1707-1713.
[25]  Wang X, Yao HX, Wong MH, Ye ZH. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.)[J]. Environ Geochem Hlth, 2013, 35(6): 779-788.
[26]  Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA.Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J]. Environ Sci Technol, 2006, 40(18): 5730-5736.
[27]  傅友强, 于智卫, 蔡昆争, 沈宏. 水稻根表铁膜形成机制及其生态环境效应[J]. 植物营养与肥料学报, 2010, 16(6): 1527-1534.
[28]  Chen RF, Shen RF, Gu P, Xiong XY, Du CW, Ma JF. Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress[J]. Ann Bot, 2006, 98(2): 389-395.
[29]  Huang H, Zhu YG, Chen Z, Yin XX, Sun GX. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil[J].J Soil Sediments, 2012, 12(3): 402-410.
[30]  Batty LC, Baker AJM, Wheeler BD. Aluminium and phosphate uptake by Phragmites australis: The role of Fe, Mn and Al root plaques[J]. Ann Bot, 2002, 89(4): 443-449.
[31]  王震宇, 刘利华, 温胜芳, 彭昌盛, 邢宝山, 李锋民. 2种湿地植物根表铁氧化物胶膜的形成及其对磷素吸收的影响[J]. 环境科学, 2010, 31(3): 781-786.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133